2023 Vol. 44, No. 4
Display Method:
2023, 44(4): 678-692.
doi: 10.24272/j.issn.2095-8137.2022.354
The stress response is essential for animal self-defense and survival. However, species may exhibit stress response variation depending on their specific environmental and selection pressures. Blind cavefish dwell in cave environments, which differ markedly in stressors and resource availability compared to surface aquatic environments. However, whether blind cavefish exhibit differences in stress response as an adaptation to their cave environments remains unclear. Here, we investigated differences in stress response in six closely related Triplophysa species, including three blind cavefish (T. longibarbata, T. jiarongensis, and T. rosa) and three normal-sighted river fish (T. nasobarbatula, T. dongsaiensis, and T. bleekeri). Results showed that blind cavefish exhibited a range of distinct behavioral responses compared to sighted river fish, including greater levels of activity, shorter duration of freezing, absence of erratic movements or thrashing behavior, and opposite behavioral trends over time. Furthermore, the cavefish species demonstrated attenuated increases in metabolic rate in response to stressors related to novel environments. Cave-dwelling T. rosa also exhibited lower basal hypothalamic-pituitary-inter-renal (HPI) axis-related gene expression levels and stress hormone concentrations compared to river-dwelling T. bleekeri. These results suggest that blind cavefish may have lost their behavioral stress response, potentially mediated by a reduction in basal activity of the HPI axis, thus enabling the conservation of energy by reducing unnecessary expenditure in energy-limited caves.
The sizes of Astyanax mexicanus blind cavefish populations of North-East Mexico are demographic parameters of great importance for investigating a variety of ecological, evolutionary, and conservation issues. However, few estimates have been obtained. For these mobile animals living in an environment difficult to explore as a whole, methods based on capture-mark-recapture are appropriate, but their feasibility and interpretation of results depend on several assumptions that must be carefully examined. Here, we provide evidence that minimally invasive genetic identification from captures at different time intervals (three days and three years) can give insights into cavefish population size dynamics as well as other important demographic parameters of interest. We also provide tools to calibrate sampling and genotyping efforts necessary to reach a given level of precision. Our results suggest that the El Pachón cave population is currently very small, of an order of magnitude of a few hundreds of individuals, and is distributed in a relatively isolated area. The probable decline in population size in the El Pachón cave since the last census in 1971 raises serious conservation issues.
2023, 44(4): 712-724.
doi: 10.24272/j.issn.2095-8137.2022.473
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia. However, given its inherent complexity, few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive. Here, we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors, including anesthesia with surgery (AS), systemic inflammation, and neurotransmission modulation. We found that both bacterial lipopolysaccharide (LPS) and cholinergic receptor antagonist scopolamine (Scop) induction reduced neuronal activities in the delirium-related brain network, with the latter presenting a similar pattern of reduction as found in delirium patients. Consistently, Scop injection resulted in reversible cognitive impairment with hyperactive behavior. No loss of cholinergic neurons was found with treatment, but hippocampal synaptic functions were affected. These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.
2023, 44(4): 732-736.
doi: 10.24272/j.issn.2095-8137.2023.029
We describe a new species of Nanohyla from the Song Hinh Protected Forest in Phu Yen Province, southern Vietnam, based on an integrative taxonomic approach. The new species represents a divergent lineage (16S rRNA gene uncorrected P-distance>5.3%), which clearly differs from any other Nanohyla species based on a series of morphological characters, most notably the presence of white spots on the top of its head. Morphologically, Nanohyla albopunctata sp. nov. is characterized by small body size (male snout–vent length (SVL) 18.2–20.2 mm); moderately slender body habitus; rounded snout; distinct tympanum; rounded canthus rostralis; loreal region slightly concave; skin on dorsum tubercular, ventral surfaces smooth; mid-vertebral skin ridge and dorsomedial stripe absent; superciliary tubercles absent; supratympanic fold indistinct; finger I reduced, less than half of finger II in length; II–IV fingers bearing discs with weak terminal grooves; two distinct palmar tubercles; two metatarsal tubercles; hindlimbs long, tibiotarsal articulation of adpressed limb reaching well beyond snout; fingers free of webbing; toe webbing formula: I 1–2 II 1–2 III 1–2 IV 1½–1 V; dorsum varying from dark gray to yellowish-gray, with darker "teddy-bear"-shaped brown marking; posterior surfaces of thighs and cloacal region with several brown stripes; chin, chest, and belly with gray mottling. We also report on the male advertisement call of the new species, characterized by a series of rattling sounds, consisting of 2–6 calls lasting 0.63 s, with 1–3 initial pulses and 5–9 successive pulses at a dominant frequency of ca. 3.02 kHz. To date, Nanohyla albopunctata sp. nov. is known only from the monsoon lowland tropical forest at the foothills of the Ca Mountain Range in Phu Yen Province of southern Vietnam at elevations of 200–400 m a.s.l., uncommon for the generally mountain-restricted Nanohyla genus. Our discovery brings the total number of Nanohyla species to 10, seven of which occur in Vietnam. We preliminary suggest the new species be considered as Data Deficient (DD) following the IUCN Red List categories.
2023, 44(4): 747-749.
doi: 10.24272/j.issn.2095-8137.2023.178
In less than a century, Asia’s largest apex predator, the tiger (Panthera tigris), has been relegated to isolated populations surviving in only a small fraction of its historical range. The Medog region, located in Xizang Zizhiqu (Tibet), China, is an important stronghold for this ecologically important apex predator. To enhance our knowledge of the status of tigers in the Medog region, we carried out a systematic camera trapping survey combined with socioecological data collection between April 2020 and May 2022. We surveyed a 1 769 km2 area across the Medog region, with a total valid sampling effort of 43 163 camera days from 322 camera stations. We also collected socioecological data from 27 forest rangers. We documented tigers at eight camera trapping stations at two villages separated by the Jinzhu Tsangpo River, confirming the presence of at least one adult male individual within the Medog region. These new records were observed over 80 km northeast of the first record in 2019. Additionally, residents reported tiger sightings in 2020 and likely tiger pugmarks in 2021. These spatially and temporally separate records of tigers in the Medog region provide valuable data for informing species-oriented conservation management and highlight the importance of the region for tiger movement and population expansion. However, although encouraging, our survey also detected human activities that may threaten tigers and their potential prey. Ensuring the future survival of tigers in the Medog region entails anti-poaching patrols and long-term camera trapping efforts. In addition, it is also important to identify and establish corridors that connect the Medog region with the adjacent Zangnan region, which also harbors an important population of tigers.
2023, 44(4): 750-760.
doi: 10.24272/j.issn.2095-8137.2022.466
Feeding strategies of an organism depend on the multimodal sensory processing that most efficiently integrates available visual, chemosensory, and/or mechanoreceptive cues as part of their environmental adaptation. The blind cavefish morph of Astyanax mexicanus has developed sensory-dependent behaviors to find food more efficiently than their eyed, surface-morph counterparts while in darkness. In the absence of light, adult cavefish have evolved enhanced behaviors, such as vibration attraction behavior (VAB), and changes in feeding angle. Here, we identified evolved differences in cavefish larval prey capture (LPC) behavior. In the dark, LPC is more efficient in cavefish than in surface fish. Furthermore, different cave populations express laterality in their LPC and strike towards prey preferentially located on their left or right sides. This suggests the occurrence, to some extent, of divergent LPC evolution among cave populations. While LPC can be triggered exclusively by a vibration stimulus in both surface and cavefish, we provide evidence that LPC is, at least partially, a multimodal sensory process different from adult VAB. We also found that a lack of food may exacerbate the laterality of LPC. Thus, we proposed a mathematical model for explaining laterality based on a balance between: (1) enlarged range of foraging field (behavioral or perceptive) due to asymmetry, (2) food abundance, and (3) disadvantages caused by laterality (unequal lateral hydrodynamic resistance when swimming, allocation of resources for the brain and receptors, and predator escape).
Cave-adapted animals provide a unique opportunity to study the evolutionary mechanisms underlying phenotypic, metabolic, behavioral, and genetic evolution in response to cave environments. The Mexican tetra (Astyanax mexicanus) is considered a unique model system as it shows both surface and cave-dwelling morphs. To date, at least 33 different cave populations have been identified, with phylogenetic studies suggesting an origin from at least two independent surface lineages, thereby providing a unique opportunity to study parallel evolution. In the present study, we carried out the most exhaustive phylogeographic study of A. mexicanus to date, including cave and surface localities, using two mitochondrial markers (cytochrome b (cyt b) and cytochrome c oxidase subunit I (COI)) and nuclear rhodopsin visual pigment (rho). Additionally, we inferred the molecular evolution of rho within the two contrasting environments (cave and surface) and across three geographic regions (Sierra de El Abra, Sierra de Guatemala, and Micos). In total, 267 individuals were sequenced for the two mitochondrial fragments and 268 individuals were sequenced for the rho visual pigment from 22 cave and 46 surface populations. Phylogeographic results based on the mitochondrial data supported the two-lineage hypothesis, except for the Pachón and Chica caves, whose introgression has been largely documented. The Sierra de El Abra region depicted the largest genetic diversity, followed by the Sierra de Guatemala region. Regarding the phylogeographic patterns of rho, we recovered exclusive haplogroups for the Sierra de El Abra (Haplogroup I) and Sierra de Guatemala regions (Haplogroup IV). Moreover, a 544 bp deletion in the rho gene was observed in the Escondido cave population from Sierra de Guatemala, reducing the protein from seven to three intramembrane domains. This change may produce a loss-of-function (LOF) but requires further investigation. Regarding nonsynonymous (dN) and synonymous (dS) substitution rates (omega values ω), our results revealed the prevailing influence of purifying selection upon the rho pigment for both cave and surface populations (ω<1), but relaxation at the El Abra region. Notably, in contrast to the other two regions, we observed an increase in the number of dN mutations for Sierra de El Abra. However, given that a LOF was exclusively identified in the Sierra de Guatemala region, we cannot dismiss the possibility of a pleiotropic effect on the Rho protein.
2023, 44(4): 782-792.
doi: 10.24272/j.issn.2095-8137.2022.376
Astyanax mexicanus has repeatedly colonized cave environments, displaying evolutionary parallelisms in many troglobitic traits. Despite being a model system for the study of adaptation to life in perpetual darkness, the parasites that infect cavefish are practically unknown. In this study, we investigated the macroparasite communities in 18 cavefish populations from independent lineages and compared them with the parasite diversity found in their sister surface fish populations, with the aim of better understanding the role that parasites play in the colonization of new environments. Within the cavefish populations, we identified 13 parasite taxa, including a subset of 10 of the 27 parasite taxa known for the surface populations. Parasites infecting the cavefish belong to five taxonomic groups, including trematodes, monogeneans, nematodes, copepods, and acari. Monogeneans are the most dominant group, found in 14 caves. The macroparasites include species with direct life cycles and trophic transmission, including invasive species. Surprisingly, paired comparisons indicate higher parasite richness in the cavefish than in the surface fish. Spatial variation in parasite composition across the caves suggests historical and geographical contingencies in the host-parasite colonization process and potential evolution of local adaptations. This base-line data on parasite diversity in cavefish populations of A. mexicanus provides a foundation to explore the role of divergent parasite infections under contrasting ecological pressures (cave vs. surface environments) in the evolution of cave adaptive traits.
Intestinal microbes are closely related to vital host functions such as digestion and nutrient absorption, which play important roles in enhancing host adaptability. As a natural “laboratory”, caves provide an outstanding model for understanding the significance of gut microbes and feeding habits in the habitat adaptability of hosts. However, research on the relationship between gut microbes, feeding habits, and the adaptability of troglobites remains insufficient. In this study, we compared the characteristics of the intestinal microbes of Sinocyclocheilus cavefish and surface fish and further established the relationship between intestinal and habitat microbes. Furthermore, we conducted environmental DNA (eDNA) (metabarcoding) analysis of environmental samples to clarify the composition of potential food resources in the habitats of the Sinocyclocheilus cavefish and surface fish. Results showed that the structure of the Sinocyclocheilus gut microbes was more related to ecological type (habitat type) than phylogenetic relationships. While horizontal transfer of habitat microbes was a source of gut microbes, hosts also showed strong selection for inherent microbes as dominant microorganisms. Differences in the composition and structure of gut microbes, especially dominant microbes, may enhance the adaptability of the two Sinocyclocheilus fish types from the perspectives of food intake, nutrient utilization, and harmful substance metabolism, suggesting that food resources, predation patterns, intestinal flora, digestive and absorptive capacity, and feeding habits and preferences are linked to habitat adaptability. These results should facilitate our understanding of the significance of fish gut microbes to habitat adaptation and provide a new perspective for studying the adaptive mechanisms of cavefish.
2023, 44(4): 808-820.
doi: 10.24272/j.issn.2095-8137.2022.488
Recent colonization of extreme environments provides unique opportunities to study the early steps of adaptation and the potential for rapid convergent evolution. However, phenotypic shifts during recent colonization may also be due to plasticity in response to changes in the rearing environment. Here, we analyzed a suite of morphological and behavioral traits in paired surface, subterranean, and facultatively subterranean Mexican tetras (Astyanax mexicanus) from recent introductions in two separate watersheds outside of their native range. We found a variety of phenotypic and behavioral shifts between subterranean and surface populations that are similar to those observed in relatively ancient populations in Mexico. Despite this rapid morphological divergence, we found that most of these trait differences were due to plasticity in response to rearing environments. While most trait assays in common-garden, lab-raised fish indicated that phenotypic shifts in wild fish were the result of plasticity, we also found evidence of genetic control in several traits present in subterranean populations. Interestingly, wall-following behavior, an important subterranean foraging behavior, was greater in lab-born subterranean fish than in lab-born surface fish, suggesting rapid divergence of this trait between subterranean and surface populations. Thus, this study sheds light on the early steps of subterranean evolution, identifies potential rapid behavioral evolution, and suggests that plasticity in traits involving exploratory behavior may facilitate subterranean colonization.
Cave animals are an excellent model system for studying adaptive evolution. At present, however, little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves. One possibility is that these species have the necessary genetic background to respond with plastic changes to the pressures of underground habitats. To gain insight into this process, we conducted a comparative study with the fish species Telestes karsticus, which occurs in a hydrological system consisting of an interconnected stream and a cave. Results showed that T. karsticus resided year-round and spawned in Sušik cave, making it the first known cavefish in the Dinaric Karst. Cave and surface populations differed in morphological and physiological characteristics, as well as in patterns of gene expression without any evidence of genetic divergence. To test whether observed trait differences were plastic or genetic, we placed adult fish from both populations under light/dark or constant dark conditions. Common laboratory conditions erased all morphometric differences between the two morphs, suggesting phenotypic plasticity is driving the divergence of shape and size in wild fish. Lighter pigmentation and increased fat deposition exhibited by cave individuals were also observed in surface fish kept in the dark in the laboratory. Our study also revealed that specialized cave traits were not solely attributed to developmental plasticity, but also arose from adult responses, including acclimatization. Thus, we conclude that T. karsticus can adapt to cave conditions, with phenotypic plasticity playing an important role in the process of cave colonization.