Accepted articles have already been peer-reviewed and will undergo language editing, typesetting, and proofreading before being published in final form. Upon acceptance, however, articles are citable by their Digital Object Identifier (DOI).
Display Method:
Abstract:
The final volume/issue numbers and page numbers are available for citation.
Display Method:
Confused geographical structure of a population and mitonuclear discordance are shaped by a combination of rapid changes in population demographics and shifts in ecology. In this study, we generated a time-calibrated phylogeny of Scutiger boulengeri, an endemic Xizang alpine toad occurring in mountain streams on the Qinghai-Xizang (Tibet) Plateau (QTP). Based on three mitochondrial DNA (mtDNA) genes, eight clades were assigned to three deeply divergent lineages. Analysis of nuclear DNA (nuDNA) genes revealed three distinct clusters without geographic structure, indicating significantly high rates of gene flow. Coalescent theory framework analysis (approximate Bayesian computation model DIYABC and Migrate-N) suggested that divergence of the main intraspecific clusters was the result of hybridization after secondary contact in the Holocene around 0.59 million years ago (Ma). The ratio of mtDNA FST (fixation index) to nuDNA FST was 2.3, thus failing to show male-biased dispersal. Geographic cline analysis showed that a wide hybrid zone was initially established in southwestern China, without significant reproductive isolation but with strong introgression in S. boulengeri, suggesting high hybrid fitness. Furthermore, mtDNA genes exhibited isolation by distance (IBD) while nuDNA genes exhibited significant isolation by environment (IBE). Results suggested that mitonuclear discordance may have initially been caused by geographic isolation, followed by precipitation-mediated hybridization, producing a wide hybrid zone and geographic structure confusion of nuDNA genes in S. boulengeri. This study indicated that complicated historical processes may have led to specific genetic patterns, with a specific climate factor facilitating gene flow in the system.
Understanding how evolutionary pressures related to climate change have shaped the current genetic background of domestic animals is a fundamental pursuit of biology. Here, we generated whole-genome sequencing data from native goat populations in Iraq and Pakistan. Combined with previously published data on modern, ancient (Late Neolithic to Medieval periods), and wild Capra species worldwide, we explored the genetic population structure, ancestry components, and signatures of natural positive selection in native goat populations in Southwest Asia (SWA). Results revealed that the genetic structure of SWA goats was deeply influenced by gene flow from the eastern Mediterranean during the Chalcolithic period, which may reflect adaptation to gradual warming and aridity in the region. Furthermore, comparative genomic analysis revealed adaptive introgression of the KITLG locus from the Nubian ibex (C. nubiana) into African and SWA goats. The frequency of the selected allele at this locus was significantly higher among goat populations located near northeastern Africa. These results provide new insights into the genetic composition and history of goat populations in the SWA region.
Fluoxetine (Prozac™) is the only antidepressant approved by the US Food and Drug Administration (FDA) for the treatment of major depressive disorder (MDD) in children. Despite its considerable efficacy as a selective serotonin reuptake inhibitor, the possible long-term effects of fluoxetine on brain development in children are poorly understood. In the current study, we aimed to delineate molecular mechanisms and protein biomarkers in the brains of juvenile rhesus macaques (Macaca mulatta) one year after the discontinuation of fluoxetine treatment using proteomic and phosphoproteomic profiling. We identified several differences in protein expression and phosphorylation in the dorsolateral prefrontal cortex (DLPFC) and cingulate cortex (CC) that correlated with impulsivity in animals, suggesting that the GABAergic synapse pathway may be affected by fluoxetine treatment. Biomarkers in combination with the identified pathways contribute to a better understanding of the mechanisms underlying the chronic effects of fluoxetine after discontinuation in children.
Lycosidae females demonstrate meticulous maternal care of offspring by carrying egg sacs and juvenile spiderlings during the reproductive stage. Nuclear receptors (NRs), especially the ecdysone receptor (EcR) and ultraspiracle (USP), have attracted considerable attention in the regulation of arthropod development and reproduction due to their pivotal roles in ecdysteroid signaling cascades. In the present study, 23 NRs, including one EcR and two USPs, were identified in the genome of the predatory wolf spider Pardosa pseudoannulata. RNA interference (RNAi) targeting EcR and USP-1 inhibited spiderling development and resulted in non-viable eggs in the egg sacs. EcR and USP-1 responded to changes in ecdysteroid levels, and interference in ecdysteroid biosynthesis led to similar phenotypes as dsEcR and dsUSP-1 treatments. These findings suggest that EcR/USP-1-mediated ecdysteroid signaling regulates P. pseudoannulata development and reproduction. The P. pseudoannulata females with suppressed ecdysteroid signaling proactively consumed their non-viable egg sacs, resulting in a 7.19 d shorter first reproductive cycle than the controls. Termination of the failed reproductive cycle enabled the spiders to produce a new egg sac more rapidly. This reproductive strategy may partially rescue the reduction in population growth due to non-viable eggs and compensate for the physiological expenditure of wasted maternal care, which would be beneficial for the conservation of P. pseudoannulata populations and their natural control of insect pests.
The development of epigenetic maps, such as the ENCODE project in humans, provides resources for gene regulation studies and a reference for research of disease-related regulatory elements. However, epigenetic information, such as a bird-specific chromatin accessibility atlas, is currently lacking for the thousands of bird species currently described. The major genomic difference between birds and mammals is their shorter introns and intergenic distances, which seriously hinders the use of humans and mice as a reference for studying the function of important regulatory regions in birds. In this study, using chicken as a model bird species, we systematically compiled a chicken chromatin accessibility atlas using 53 Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) samples across 11 tissues. An average of 50 796 open chromatin regions were identified per sample, cumulatively accounting for 20.36% of the chicken genome. Tissue specificity was largely reflected by differences in intergenic and intronic peaks, with specific functional regulation achieved by two mechanisms: recruitment of several sequence-specific transcription factors and direct regulation of adjacent functional genes. By integrating data from genome-wide association studies, our results suggest that chicken body weight is driven by different regulatory variants active in growth-relevant tissues. We propose CAB39L (active in the duodenum), RCBTB1 (muscle and liver), and novel long non-coding RNA ENSGALG00000053256 (bone) as candidate genes regulating chicken body weight. Overall, this study demonstrates the value of epigenetic data in fine-mapping functional variants and provides a compendium of resources for further research on the epigenetics and evolution of birds and mammals.
Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd -/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.
Largemouth bass (Micropterus salmoides) is an economically important fish species in North America, Europe, and China. Various genetic improvement programs and domestication processes have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In this study, we sequenced 149 largemouth bass fish, including protospecies (imported from the US) and improved breeds (four domestic breeding populations from China). We detected genomic regions harboring certain genes associated with improved traits, which may be useful molecular markers for practical domestication, breeding, and selection. Subsequent analyses of genetic diversity and population structure revealed that the improved breeds have undergone more rigorous genetic changes. Through selective signal analysis, we identified hundreds of putative selective sweep regions in each largemouth bass line. Interestingly, we predicted 103 putative candidate genes potentially subjected to selection, including several associated with growth (psst1 and grb10), early development (klf9, sp4, and sp8), and immune traits (pkn2, sept2, bcl6, and ripk2). These candidate genes represent potential genomic landmarks that could be used to improve important traits of biological and commercial interest. In summary, this study provides a genome-wide map of genetic variations and selection footprints in largemouth bass, which may benefit genetic studies and accelerate genetic improvement of this economically important fish.
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel (Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1-/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Full issue
 2022-6 Contents
2022, 43(6).  
+ Abstract (8) PDF (26290KB) (0)
Article
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 (OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Obituary
Letter to the editor
Research highlight
Article
Pseudomonas plecoglossicida is the pathogen responsible for visceral white spot disease in large yellow croaker (Larimichthys crocea) and orange-spotted grouper (Epinephelus coioides). Previously, RNA sequencing showed that P. plecoglossicida flgK gene expression was significantly up-regulated in orange-spotted grouper spleens during infection. To explore the role of flgK in P. plecoglossicida pathogenicity, RNA interference (RNAi) was performed to silence the P. plecoglossicida flgK gene, and the mutant (flgK-RNAi strain) with the best silencing efficiency (89.40%) was chosen for further study. Results showed that flgK gene silencing significantly attenuated P. plecoglossicida motility, adhesion, and biofilm formation. Compared to those fish infected with the wild-type strain of P. plecoglossicida, orange-spotted grouper infected with the flgK-RNAi strain showed a 55% increase in the survival rate and a one-day delay in time of first death, with fewer pathogens in the spleen and fewer white spots on the spleen surface. RNAi of flgK significantly affected the transcriptome and metabolome of the spleen in infected orange-spotted grouper. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the C-type lectin receptor signaling pathway was the most significantly changed immune-related pathway and the mitogen-activated protein kinase (MAPK) signaling pathway was related to multiple immune-related pathways. Furthermore, arginine biosynthesis and glycerophospholipid metabolism were the most significantly changed metabolism-related pathways. These findings suggest that flgK is a virulence gene of P. plecoglossicida. Furthermore, flgK appears to be involved in the regulation of motility, adhesion, and biofilm formation in P. plecoglossicida, as well as in the regulation of inflammatory and immune responses of orange-spotted grouper to P. plecoglossicida infection.
Spring viremia of carp virus (SVCV) is globally widespread and poses a serious threat to aquatic ecology and aquaculture due to its broad host range. To develop effective agents to control SVCV infection, we selected 16 naturally active small molecules to assess their anti-SVCV activity. Notably, dihydroartemisinin (DHA) (100 µmol/L) and (S, S)-(+)-tetrandrine (TET) (16 µmol/L) exhibited high antiviral effects in epithelioma papulosum cyprinid (EPC) cells, with inhibitory rates of 70.11% and 73.54%, respectively. The possible antiviral mechanisms were determined as follows: 1. Pre-incubation with DHA and TET decreased viral particle infectivity in fish cells, suggesting that horizontal transmission of SVCV in the aquatic environment was disrupted; 2. Although neither had an effect on viral adhesion, TET (but not DHA) interfered with SVCV entry into host cells (>80%), suggesting that TET may have an antiviral function in early viral replication. For in vivo study, both agents enhanced the survival rate of SVCV-infected zebrafish by 53.3%, significantly decreased viral load, and modulated the expression of antiviral-related genes, indicating that DHA and TET may stimulate the host innate immune response to prevent viral infection. Overall, our findings indicated that DHA and TET had positive effects on suppressing SVCV infection by affecting early-stage viral replication, thus holding great potential as immunostimulants to reduce the risk of aquatic rhabdovirus disease outbreaks.
Previous studies have identified multiple viruses in dead or severely diseased pangolins, but descriptions of the virome in healthy pangolins are lacking. This poses a greater risk of cross-species transmission due to poor preventive awareness and frequent interactions with breeders. In this study, we investigated the viral composition of 34 pangolins with no signs of disease at the time of sampling and characterized a large number of arthropod-associated viruses belonging to 11 families and vertebrate viruses belonging to eight families, including those with pathogenic potential in humans and animals. Several important vertebrate viruses were identified in the pangolins, including parvovirus, pestivirus, and picobirnavirus. The picobirnavirus was clustered with human and grey teal picobirnaviruses. Viruses with cross-species transmission ability were also identified, including circovirus, rotavirus, and astrovirus. Our study revealed that pangolins are frequently exposed to arthropod-associated viruses in the wild and can carry many vertebrate viruses under natural conditions. This study provides important insights into the virome of pangolins, underscoring the importance of monitoring potential pathogens in healthy pangolins to prevent outbreaks of infectious diseases in domesticated animals and humans.
Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.
Letter to the editor
Article
The evolutionary and functional features of RNA editing are well studied in mammals, cephalopods, and insects, but not in birds. Here, we integrated transcriptomic and whole-genomic analyses to exhaustively characterize the expansive repertoire of adenosine-to-inosine (A-to-I) RNA editing sites (RESs) in the chicken. In addition, we investigated the evolutionary status of the chicken editome as a potential mechanism of domestication. We detected the lowest editing level in the liver of chickens, compared to muscles in humans, and found higher editing activity and specificity in the brain than in non-neural tissues, consistent with the brain’s functional complexity. To a certain extent, specific editing activity may account for the specific functions of tissues. Our results also revealed that sequences critical to RES secondary structures remained conserved within avian evolution. Furthermore, the RNA editome was shaped by purifying selection during chicken domestication and most RESs may have served as a selection pool for a few functional RESs involved in chicken domestication, including evolution of nervous and immune systems. Regulation of RNA editing in chickens by adenosine deaminase acting on RNA (ADAR) enzymes may be affected by non-ADAR factors whose expression levels changed widely after ADAR knockdown. Collectively, we provide comprehensive lists of candidate RESs and non-ADAR-editing regulators in the chicken, thus contributing to our current understanding of the functions and evolution of RNA editing in animals.
Research highlight
Review
Although great advances in elucidating the molecular basis and pathogenesis of Alzheimer’s disease (AD) have been made and multifarious novel therapeutic approaches have been developed, AD remains an incurable disease. Evidence shows that AD neuropathology occurs decades before clinical presentation. AD is divided into three stages: preclinical stage, mild cognitive impairment (MCI), and AD dementia. In the natural world, some animals, such as non-human primates (NHPs) and canines, can develop spontaneous AD-like dementia. However, most animals do not develop AD. With the development of transgenic techniques, both invertebrate and vertebrate animals have been employed to uncover the mechanisms of AD and study treatment methods. Most AD research focuses on early-onset familial AD (FAD) because FAD is associated with specific genetic mutations. However, there are no well-established late-onset sporadic AD (SAD) animal models because SAD is not directly linked to any genetic mutation, and multiple environmental factors are involved. Moreover, the widely used animal models are not able to sufficiently recapitulate the pathological events that occur in the MCI or preclinical stages. This review summarizes the common models used to study AD, from yeast to NHP models, and discusses the different applications, evaluation methods, and challenges related to AD animal models, as well as prospects for the evolution of future studies.
Article
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs. However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000 single-nucleus transcriptomes of the lung, liver, kidney, and cerebral cortex in rhesus macaques (Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multi-organ dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019 (COVID-19). Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway, which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy (an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection, which may facilitate the development of therapeutic interventions for COVID-19.
Confused geographical structure of a population and mitonuclear discordance are shaped by a combination of rapid changes in population demographics and shifts in ecology. In this study, we generated a time-calibrated phylogeny of Scutiger boulengeri, an endemic Xizang alpine toad occurring in mountain streams on the Qinghai-Xizang (Tibet) Plateau (QTP). Based on three mitochondrial DNA (mtDNA) genes, eight clades were assigned to three deeply divergent lineages. Analysis of nuclear DNA (nuDNA) genes revealed three distinct clusters without geographic structure, indicating significantly high rates of gene flow. Coalescent theory framework analysis (approximate Bayesian computation model DIYABC and Migrate-N) suggested that divergence of the main intraspecific clusters was the result of hybridization after secondary contact in the Holocene around 0.59 million years ago (Ma). The ratio of mtDNA FST (fixation index) to nuDNA FST was 2.3, thus failing to show male-biased dispersal. Geographic cline analysis showed that a wide hybrid zone was initially established in southwestern China, without significant reproductive isolation but with strong introgression in S. boulengeri, suggesting high hybrid fitness. Furthermore, mtDNA genes exhibited isolation by distance (IBD) while nuDNA genes exhibited significant isolation by environment (IBE). Results suggested that mitonuclear discordance may have initially been caused by geographic isolation, followed by precipitation-mediated hybridization, producing a wide hybrid zone and geographic structure confusion of nuDNA genes in S. boulengeri. This study indicated that complicated historical processes may have led to specific genetic patterns, with a specific climate factor facilitating gene flow in the system.
Understanding how evolutionary pressures related to climate change have shaped the current genetic background of domestic animals is a fundamental pursuit of biology. Here, we generated whole-genome sequencing data from native goat populations in Iraq and Pakistan. Combined with previously published data on modern, ancient (Late Neolithic to Medieval periods), and wild Capra species worldwide, we explored the genetic population structure, ancestry components, and signatures of natural positive selection in native goat populations in Southwest Asia (SWA). Results revealed that the genetic structure of SWA goats was deeply influenced by gene flow from the eastern Mediterranean during the Chalcolithic period, which may reflect adaptation to gradual warming and aridity in the region. Furthermore, comparative genomic analysis revealed adaptive introgression of the KITLG locus from the Nubian ibex (C. nubiana) into African and SWA goats. The frequency of the selected allele at this locus was significantly higher among goat populations located near northeastern Africa. These results provide new insights into the genetic composition and history of goat populations in the SWA region.
Fluoxetine (Prozac™) is the only antidepressant approved by the US Food and Drug Administration (FDA) for the treatment of major depressive disorder (MDD) in children. Despite its considerable efficacy as a selective serotonin reuptake inhibitor, the possible long-term effects of fluoxetine on brain development in children are poorly understood. In the current study, we aimed to delineate molecular mechanisms and protein biomarkers in the brains of juvenile rhesus macaques (Macaca mulatta) one year after the discontinuation of fluoxetine treatment using proteomic and phosphoproteomic profiling. We identified several differences in protein expression and phosphorylation in the dorsolateral prefrontal cortex (DLPFC) and cingulate cortex (CC) that correlated with impulsivity in animals, suggesting that the GABAergic synapse pathway may be affected by fluoxetine treatment. Biomarkers in combination with the identified pathways contribute to a better understanding of the mechanisms underlying the chronic effects of fluoxetine after discontinuation in children.
Lycosidae females demonstrate meticulous maternal care of offspring by carrying egg sacs and juvenile spiderlings during the reproductive stage. Nuclear receptors (NRs), especially the ecdysone receptor (EcR) and ultraspiracle (USP), have attracted considerable attention in the regulation of arthropod development and reproduction due to their pivotal roles in ecdysteroid signaling cascades. In the present study, 23 NRs, including one EcR and two USPs, were identified in the genome of the predatory wolf spider Pardosa pseudoannulata. RNA interference (RNAi) targeting EcR and USP-1 inhibited spiderling development and resulted in non-viable eggs in the egg sacs. EcR and USP-1 responded to changes in ecdysteroid levels, and interference in ecdysteroid biosynthesis led to similar phenotypes as dsEcR and dsUSP-1 treatments. These findings suggest that EcR/USP-1-mediated ecdysteroid signaling regulates P. pseudoannulata development and reproduction. The P. pseudoannulata females with suppressed ecdysteroid signaling proactively consumed their non-viable egg sacs, resulting in a 7.19 d shorter first reproductive cycle than the controls. Termination of the failed reproductive cycle enabled the spiders to produce a new egg sac more rapidly. This reproductive strategy may partially rescue the reduction in population growth due to non-viable eggs and compensate for the physiological expenditure of wasted maternal care, which would be beneficial for the conservation of P. pseudoannulata populations and their natural control of insect pests.
The development of epigenetic maps, such as the ENCODE project in humans, provides resources for gene regulation studies and a reference for research of disease-related regulatory elements. However, epigenetic information, such as a bird-specific chromatin accessibility atlas, is currently lacking for the thousands of bird species currently described. The major genomic difference between birds and mammals is their shorter introns and intergenic distances, which seriously hinders the use of humans and mice as a reference for studying the function of important regulatory regions in birds. In this study, using chicken as a model bird species, we systematically compiled a chicken chromatin accessibility atlas using 53 Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) samples across 11 tissues. An average of 50 796 open chromatin regions were identified per sample, cumulatively accounting for 20.36% of the chicken genome. Tissue specificity was largely reflected by differences in intergenic and intronic peaks, with specific functional regulation achieved by two mechanisms: recruitment of several sequence-specific transcription factors and direct regulation of adjacent functional genes. By integrating data from genome-wide association studies, our results suggest that chicken body weight is driven by different regulatory variants active in growth-relevant tissues. We propose CAB39L (active in the duodenum), RCBTB1 (muscle and liver), and novel long non-coding RNA ENSGALG00000053256 (bone) as candidate genes regulating chicken body weight. Overall, this study demonstrates the value of epigenetic data in fine-mapping functional variants and provides a compendium of resources for further research on the epigenetics and evolution of birds and mammals.
Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd -/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.
Largemouth bass (Micropterus salmoides) is an economically important fish species in North America, Europe, and China. Various genetic improvement programs and domestication processes have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In this study, we sequenced 149 largemouth bass fish, including protospecies (imported from the US) and improved breeds (four domestic breeding populations from China). We detected genomic regions harboring certain genes associated with improved traits, which may be useful molecular markers for practical domestication, breeding, and selection. Subsequent analyses of genetic diversity and population structure revealed that the improved breeds have undergone more rigorous genetic changes. Through selective signal analysis, we identified hundreds of putative selective sweep regions in each largemouth bass line. Interestingly, we predicted 103 putative candidate genes potentially subjected to selection, including several associated with growth (psst1 and grb10), early development (klf9, sp4, and sp8), and immune traits (pkn2, sept2, bcl6, and ripk2). These candidate genes represent potential genomic landmarks that could be used to improve important traits of biological and commercial interest. In summary, this study provides a genome-wide map of genetic variations and selection footprints in largemouth bass, which may benefit genetic studies and accelerate genetic improvement of this economically important fish.
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel (Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1-/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.

Vol 43, No 6 (18 November 2022)

Indexed by SCI-E

2021 Impact Factor 6.975

2/176 Zoology (Q1)

2022 Journal Citation Reports®

中科院期刊分区生物大类及动物学双一区

Bimonthly, Since 1980

Editor-in-Chief: Yong-Gang Yao

ISSN 2095-8137

CN 53-1229/Q

Special Collections

COVID-19
Multidisciplinary Sciences
Animal models
Neuroscience
Tree shrew biology
Primates
Mammals
Amphibians & reptiles
Fish biology
Genetics & evolution
Toxin & peptide
Immunology

Archive