Accepted articles have already been peer-reviewed and will undergo language editing, typesetting, and proofreading before being published in final form. Upon acceptance, however, articles are citable by their Digital Object Identifier (DOI).
Display Method:
Abstract:
As social animals, Indo-Pacific humpback dolphins have community differentiation, but the external-internal influencing factors and spatiotemporal dynamics are not well known. Thus, we monitored the social structure variation in an endangered Indo-Pacific humpback dolphin population in Xiamen Bay, China, during two periods, namely, 2007–2010 and 2017–2019, and analyzed the influence of habitat use and individual composition. In both periods, the population showed highly similar social differentiation, and the individuals were divided into two main clusters and a small cluster. The two main clusters occupied the east and west waters but the core distribution area of the east cluster moved further eastward during 2007–2010 and 2017–2019, and the distribution shift did not change the temporal stability of the social structure or inter-association of the east cluster. The 16 identical individuals in the two periods (accounting for 51.6% and 43.2%, respectively) seemed to constitute the basic framework of the social structure and could be the main reason for the stable social structure over the past decade. However, these individuals likely played a more critical role in maintaining the social network structure in 2007–2010 than that in 2017–2019. These results suggested that the internal factors of the dominant individuals’ composition contributed more to building the social network than the external factor of habitat use change. Based on the findings, different protective measures have been proposed for two main clusters respectively.
As social animals, Indo-Pacific humpback dolphins have community differentiation, but the external-internal influencing factors and spatiotemporal dynamics are not well known. Thus, we monitored the social structure variation in an endangered Indo-Pacific humpback dolphin population in Xiamen Bay, China, during two periods, namely, 2007–2010 and 2017–2019, and analyzed the influence of habitat use and individual composition. In both periods, the population showed highly similar social differentiation, and the individuals were divided into two main clusters and a small cluster. The two main clusters occupied the east and west waters but the core distribution area of the east cluster moved further eastward during 2007–2010 and 2017–2019, and the distribution shift did not change the temporal stability of the social structure or inter-association of the east cluster. The 16 identical individuals in the two periods (accounting for 51.6% and 43.2%, respectively) seemed to constitute the basic framework of the social structure and could be the main reason for the stable social structure over the past decade. However, these individuals likely played a more critical role in maintaining the social network structure in 2007–2010 than that in 2017–2019. These results suggested that the internal factors of the dominant individuals’ composition contributed more to building the social network than the external factor of habitat use change. Based on the findings, different protective measures have been proposed for two main clusters respectively.
, Available online ,
doi: 10.24272/j.issn.2095-8137.2023.101
Abstract:
Parkinson’s disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog (Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP+)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP+-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Parkinson’s disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog (Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP+)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP+-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Abstract:
Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.
Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.
, Available online ,
doi: 10.24272/j.issn.2095-8137.2023.241
Abstract:
PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson’s disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs (Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys (Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.
PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson’s disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs (Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys (Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.
, Available online ,
doi: 10.24272/j.issn.2095-8137.2023.039
Abstract:
A total of 10 Alcyonacea corals were collected at depths ranging from 900 m to 1640 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Phylogenetic distance and average nucleotide identity (ANI) analyses of mitochondrial genomes combined with morphology examination and sclerite scanning showed that the collected samples could be assigned to four suborders - Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera - which might represent 10 novel deep-sea species. The analyses of the dissimilarity of GC skew, phylogenetic distance, and ANI indicated that the evolution of Octocorallia mitochondrial sequences was slow. The nonsynonymous (Ka) and synonymous (Ks) substitution (Ka/Ks) ratios indicated that 14 protein-coding genes (PCGs) were undergoing purifying selection and that the selection pressures might be from specific deep-sea environments. The correlation analysis of median values of Ka/Ks ratio of five gene families and environmental factors showed that the genes encoding cytochrome b (cob) and DNA mismatch repair protein (mutS) might be driven by environmental factors to format deep-sea species. This study highlighted the slow evolution and adaptative mechanism of deep-sea corals in the deep ocean.
A total of 10 Alcyonacea corals were collected at depths ranging from 900 m to 1640 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Phylogenetic distance and average nucleotide identity (ANI) analyses of mitochondrial genomes combined with morphology examination and sclerite scanning showed that the collected samples could be assigned to four suborders - Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera - which might represent 10 novel deep-sea species. The analyses of the dissimilarity of GC skew, phylogenetic distance, and ANI indicated that the evolution of Octocorallia mitochondrial sequences was slow. The nonsynonymous (Ka) and synonymous (Ks) substitution (Ka/Ks) ratios indicated that 14 protein-coding genes (PCGs) were undergoing purifying selection and that the selection pressures might be from specific deep-sea environments. The correlation analysis of median values of Ka/Ks ratio of five gene families and environmental factors showed that the genes encoding cytochrome b (cob) and DNA mismatch repair protein (mutS) might be driven by environmental factors to format deep-sea species. This study highlighted the slow evolution and adaptative mechanism of deep-sea corals in the deep ocean.
Abstract:
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), have been shown to play a crucial role in reproduction and reproductive health of vertebrates, including humans. However, the underlying mechanism of this phenomenon remains largely unknown. In this study, we used two zebrafish genetic models, the elovl2-/- mutant as an endogenous DHA-deficient model and the fat1 (an omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and oocyte quality. Our results show that the elovl2-/- mutant zebrafish had much lower fecundity and poorer oocyte quality than the wildtype controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls. DHA deficiency in elovl2-/- embryos led to defects of egg activation, poor microtubule stability and reduced pregnenolone levels. Further study reveals that DHA promotes pregnenolone synthesis by promoting the transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic–pituitary–gonadal (HPG) axis is enhanced by DHA. In conclusion, using two unique genetic models, our study demonstrates the endogenously synthesized DHA promotes oocyte maturation and oocyte quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), have been shown to play a crucial role in reproduction and reproductive health of vertebrates, including humans. However, the underlying mechanism of this phenomenon remains largely unknown. In this study, we used two zebrafish genetic models, the elovl2-/- mutant as an endogenous DHA-deficient model and the fat1 (an omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and oocyte quality. Our results show that the elovl2-/- mutant zebrafish had much lower fecundity and poorer oocyte quality than the wildtype controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls. DHA deficiency in elovl2-/- embryos led to defects of egg activation, poor microtubule stability and reduced pregnenolone levels. Further study reveals that DHA promotes pregnenolone synthesis by promoting the transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic–pituitary–gonadal (HPG) axis is enhanced by DHA. In conclusion, using two unique genetic models, our study demonstrates the endogenously synthesized DHA promotes oocyte maturation and oocyte quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
Abstract:
Glycogen is the most effective energy reserve for metabolism in aquatic shellfish, and also contributes to the flavor and quality of oyster. Jinjiang oyster Crassostrea ariakensis is an economically and ecologically important species in China. In this study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed respectively to explore the gene expression and dynamic changes of chromatin accessibility among the oysters with different glycogen contents. A total of 9483 differentially expressed genes (DEGs) and 7215 significantly differential chromatin accessibility genes (DCAGs) were obtained, with the intersection of DEGs and DCAGs reaching 2600. Many of those genes were enriched in the pathways related to glycogen metabolism such as "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, a total of 526 SNP loci associated with glycogen content obtained by the genome wide association study (GWAS) corresponded to 241 genes, 63 of which were also DEGs and DCAGs as revealed above. This study will enrich basic research data and provide insights into the molecular mechanisms underlying the regulation of glycogen metabolism in oyster.
Glycogen is the most effective energy reserve for metabolism in aquatic shellfish, and also contributes to the flavor and quality of oyster. Jinjiang oyster Crassostrea ariakensis is an economically and ecologically important species in China. In this study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed respectively to explore the gene expression and dynamic changes of chromatin accessibility among the oysters with different glycogen contents. A total of 9483 differentially expressed genes (DEGs) and 7215 significantly differential chromatin accessibility genes (DCAGs) were obtained, with the intersection of DEGs and DCAGs reaching 2600. Many of those genes were enriched in the pathways related to glycogen metabolism such as "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, a total of 526 SNP loci associated with glycogen content obtained by the genome wide association study (GWAS) corresponded to 241 genes, 63 of which were also DEGs and DCAGs as revealed above. This study will enrich basic research data and provide insights into the molecular mechanisms underlying the regulation of glycogen metabolism in oyster.
, Available online ,
doi: 10.24272/j.issn.2095-8137.2023.012
Abstract:
Monitoring the prevalence of the antimicrobial resistance gene (ARG) is critical to address the global crisis of antibiotic resistant bacterial infections. However, the characterization of ARG and microbiome structure, as well as the indicators for routine ARG monitoring in pig farms, are still lacking under the variation in antimicrobial exposure between countries/regions. Hence, metagenomics and Random Forest machine learning algorithm were used to decipher the ARG profiles, microbiome, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. The results showed that Chinese pigs exposed to high level antimicrobials had higher total and plasmid-mediated ARG abundances than European pigs (P < 0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were the shared core ARGs between Chinese and European pigs. The core ARG identified in pigs existed a linkage between corresponding country/regions pigs and humans. Moreover, Lactobacillus and Prevotella were the dominant phyla in the core microbiome of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were found to differentiate Chinese and European pig manure samples with 100% and 98.7% accuracy, respectively. We identified indicators to assess the ARG contamination in Chinese and European pigs with high accuracy (r = 0.72 ~ 0.88). Escherichia flexneri in Chinese and European pigs carried numerous ARGs, ranging from 21 to 37. This study emphasized the importance of global collaboration in reducing antimicrobial resistance (AMR) risk and provided indicators for evaluating the risk of ARG contamination in pig farms.
Monitoring the prevalence of the antimicrobial resistance gene (ARG) is critical to address the global crisis of antibiotic resistant bacterial infections. However, the characterization of ARG and microbiome structure, as well as the indicators for routine ARG monitoring in pig farms, are still lacking under the variation in antimicrobial exposure between countries/regions. Hence, metagenomics and Random Forest machine learning algorithm were used to decipher the ARG profiles, microbiome, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. The results showed that Chinese pigs exposed to high level antimicrobials had higher total and plasmid-mediated ARG abundances than European pigs (P < 0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were the shared core ARGs between Chinese and European pigs. The core ARG identified in pigs existed a linkage between corresponding country/regions pigs and humans. Moreover, Lactobacillus and Prevotella were the dominant phyla in the core microbiome of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were found to differentiate Chinese and European pig manure samples with 100% and 98.7% accuracy, respectively. We identified indicators to assess the ARG contamination in Chinese and European pigs with high accuracy (r = 0.72 ~ 0.88). Escherichia flexneri in Chinese and European pigs carried numerous ARGs, ranging from 21 to 37. This study emphasized the importance of global collaboration in reducing antimicrobial resistance (AMR) risk and provided indicators for evaluating the risk of ARG contamination in pig farms.
Abstract:
Geographical backgrounds and dispersal ability might have strong imprint on assemblage dissimilarity; however, these aspects have generally been overlooked in large-scale beta diversity studies. Here, we examined whether patterns and drivers of taxonomic beta diversity (TBD) and phylogenetic beta diversity (PBD) of breeding birds in China vary across 1) regions on both sides of the Hu Line, a line that demarcates China’s topographical, climatic, economic, and social patterns, and 2) species with different dispersal ability. TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach. Variables representing climate, habitat heterogeneity, and habitat quality were used to evaluate the effects of environmental filtering, whereas spatial distance was used to assess the influences of dispersal limitation. Variance partitioning analysis was used to assess the relative role of these variables. In general, TBD and PBD values were high in mountainous areas and environmental filtering largely determined TBD and PBD. However, different dominating environmental filters on both sides of the Hu Line led to divergent beta diversity patterns. Specifically, climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions at east and west of the Hu Line, respectively. Additionally, bird species with stronger dispersal ability were more susceptible to environmental filtering resulting in more homogeneous assemblages. Our results indicated that regions with distinctive geographical backgrounds might present different ecological factors that lead to divergent assemblage dissimilarity patterns, and dispersal ability determines the response of assemblages to these ecological factors. Identifying a single universal explanation for the observed pattern without considering these aspects might lead to simplistic or incomplete conclusions. Therefore, it is essential to consider the combined effect of geographical background and dispersal ability for comprehensively understanding large-scale patterns of beta diversity and for planning conservation strategies.
Geographical backgrounds and dispersal ability might have strong imprint on assemblage dissimilarity; however, these aspects have generally been overlooked in large-scale beta diversity studies. Here, we examined whether patterns and drivers of taxonomic beta diversity (TBD) and phylogenetic beta diversity (PBD) of breeding birds in China vary across 1) regions on both sides of the Hu Line, a line that demarcates China’s topographical, climatic, economic, and social patterns, and 2) species with different dispersal ability. TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach. Variables representing climate, habitat heterogeneity, and habitat quality were used to evaluate the effects of environmental filtering, whereas spatial distance was used to assess the influences of dispersal limitation. Variance partitioning analysis was used to assess the relative role of these variables. In general, TBD and PBD values were high in mountainous areas and environmental filtering largely determined TBD and PBD. However, different dominating environmental filters on both sides of the Hu Line led to divergent beta diversity patterns. Specifically, climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions at east and west of the Hu Line, respectively. Additionally, bird species with stronger dispersal ability were more susceptible to environmental filtering resulting in more homogeneous assemblages. Our results indicated that regions with distinctive geographical backgrounds might present different ecological factors that lead to divergent assemblage dissimilarity patterns, and dispersal ability determines the response of assemblages to these ecological factors. Identifying a single universal explanation for the observed pattern without considering these aspects might lead to simplistic or incomplete conclusions. Therefore, it is essential to consider the combined effect of geographical background and dispersal ability for comprehensively understanding large-scale patterns of beta diversity and for planning conservation strategies.
, Available online ,
doi: 10.24272/j.issn.2095-8137.2023.060
Abstract:
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genome sequences of species, while their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs are an excellent animal models for studying the biology of the genome sequences owing to their great diversity of wild and domesticated populations. Here, we integrated H3K27ac ChIP-seq, H3K4me3 ChIP-seq and RNA-seq data from 10 tissues of the same 7 fetuses and their consanguineously related 8 adult pigs to annotate the regulatory elements and TEs for their links with histone modifications and mRNA expression across varying tissues and development stages. The association analyses of mRNA expression with H3K27ac and H3K4me3 peak activity revealed that H3K27ac peaks showed stronger associations with gene expression than H3K4me3. We revealed that 1.45% of the TEs overlapped with H3K27ac or H3K4me3 peaks, of which the majority displayed tissue-specific activity. We identified a TE subfamily (LTR4C_SS) with binding motifs for SIX1 and SIX4 that showed specific enrichment in adult and fetal ovary H3K27ac peaks. We also revealed widespread expression of TEs as part of exons or promoters of genes from the RNA-seq data, including 4688 TE-containing transcripts that displayed development stage and tissue-specific expression. Notably, 1967 TE-containing transcripts were enriched in the testes. We highlighted that an LTR acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig data, MLT1F1, was also conserved in humans and mice, suggesting an ancient embedding of the TEs in testis-specific expressed genes or parallel evolution. Collectively, our work demonstrates that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genome sequences of species, while their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs are an excellent animal models for studying the biology of the genome sequences owing to their great diversity of wild and domesticated populations. Here, we integrated H3K27ac ChIP-seq, H3K4me3 ChIP-seq and RNA-seq data from 10 tissues of the same 7 fetuses and their consanguineously related 8 adult pigs to annotate the regulatory elements and TEs for their links with histone modifications and mRNA expression across varying tissues and development stages. The association analyses of mRNA expression with H3K27ac and H3K4me3 peak activity revealed that H3K27ac peaks showed stronger associations with gene expression than H3K4me3. We revealed that 1.45% of the TEs overlapped with H3K27ac or H3K4me3 peaks, of which the majority displayed tissue-specific activity. We identified a TE subfamily (LTR4C_SS) with binding motifs for SIX1 and SIX4 that showed specific enrichment in adult and fetal ovary H3K27ac peaks. We also revealed widespread expression of TEs as part of exons or promoters of genes from the RNA-seq data, including 4688 TE-containing transcripts that displayed development stage and tissue-specific expression. Notably, 1967 TE-containing transcripts were enriched in the testes. We highlighted that an LTR acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig data, MLT1F1, was also conserved in humans and mice, suggesting an ancient embedding of the TEs in testis-specific expressed genes or parallel evolution. Collectively, our work demonstrates that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
The final volume/issue numbers and page numbers are available for citation.
Display Method:
Changes in protein abundance and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Xizang (Tibet) Plateau (QTP). In total, 5 170 proteins and 5 695 phosphorylation sites in 1 938 proteins were quantified. Based on proteomic analysis, 674 differentially expressed proteins (438 up-regulated, 236 down-regulated) were screened in hibernating N. parkeri versus summer individuals. Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways, whereas lower expressed proteins were mainly involved in metabolic processes. A total of 4 251 modified sites (4 147 up-regulated, 104 down-regulated) belonging to 1 638 phosphoproteins (1 555 up-regulated, 83 down-regulated) were significantly changed in the liver. During hibernation, RPP regulated a diverse array of proteins involved in multiple functions, including metabolic enzymatic activity, ion transport, protein turnover, signal transduction, and alternative splicing. These changes contribute to enhancing protection, suppressing energy-consuming processes, and inducing metabolic depression. Moreover, the activities of phosphofructokinase, glutamate dehydrogenase, and ATPase were all significantly lower in winter compared to summer. In conclusion, our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
2024, 45(1): 13-24.
doi: 10.24272/j.issn.2095-8137.2023.053
Mammalian T-cell responses require synergism between the first signal and co-stimulatory signal. However, whether and how dual signaling regulates the T-cell response in early vertebrates remains unknown. In the present study, we discovered that the Nile tilapia (Oreochromis niloticus) encodes key components of the LAT signalosome, namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and PLC-γ1. These components are evolutionarily conserved, and CD3ε mAb-induced T-cell activation markedly increased their expression. Additionally, at least ITK, GRB2, and VAV1 were found to interact with LAT for signalosome formation. Downstream of the first signal, the NF-κB, MAPK/ERK, and PI3K-AKT pathways were activated upon CD3ε mAb stimulation. Furthermore, treatment of lymphocytes with CD28 mAbs triggered the AKT-mTORC1 pathway downstream of the co-stimulatory signal. Combined CD3ε and CD28 mAb stimulation enhanced ERK1/2 and S6 phosphorylation and elevated NFAT1, c-Fos, IL-2, CD122, and CD44 expression, thereby signifying T-cell activation. Moreover, rather than relying on the first or co-stimulatory signal alone, both signals were required for T-cell proliferation. Full T-cell activation was accompanied by marked apoptosis and cytotoxic responses. These findings suggest that tilapia relies on dual signaling to maintain an optimal T-cell response, providing a novel perspective for understanding the evolution of the adaptive immune system.
Long non-coding RNAs (lncRNAs) function as key modulators in mammalian immunity, particularly due to their involvement in lncRNA-mediated competitive endogenous RNA (ceRNA) crosstalk. Despite their recognized significance in mammals, research on lncRNAs in lower vertebrates remains limited. In the present study, we characterized the first immune-related lncRNA (pol-lnc78) in the teleost Japanese flounder (Paralichthys olivaceus). Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein (SARM), the fifth discovered member of the Toll/interleukin 1 (IL-1) receptor (TIR) adaptor family. This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor (TLR) signaling pathway. Specifically, SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1β and tumor necrosis factor-α (TNF-α). Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’ untranslated region (UTR), thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination. Furthermore, pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression. During infection, the negative regulators pol-lnc78 and SARM were significantly down-regulated, while pol-miR-n199-3p was significantly up-regulated, thus favoring host antibacterial defense. These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
2024, 45(1): 36-38.
doi: 10.24272/j.issn.2095-8137.2023.038
The dynamics of animal social structures are heavily influenced by environmental patterns of competition and cooperation. In folivorous colobine primates, prevailing theories suggest that larger group sizes should be favored in rainforests with a year-round abundance of food, thereby reducing feeding competition. Yet, paradoxically, larger groups are frequently found in high-altitude or high-latitude montane ecosystems characterized by a seasonal scarcity of leaves. This contradiction is posited to arise from cooperative benefits in heterogeneous environments. To investigate this hypothesis, we carried out a six-year field study on two neighboring groups of golden snub-nosed monkey (Rhinopithecus roxellana), a species representing the northernmost distribution of colobine primates. Results showed that the groups adjusted their movement and habitat selection in response to fluctuating climates and spatiotemporal variability of resources, indicative of a dynamic foraging strategy. Notably, during the cold, resource-scarce conditions in winter, the large group occupied food-rich habitats but did not exhibit significantly longer daily travel distances than the smaller neighboring group. Subsequently, we compiled an eco-behavioral dataset of 52 colobine species to explore their evolutionary trajectories. Analysis of this dataset suggested that the increase in group size may have evolved via home range expansion in response to the cold and heterogeneous climates found at higher altitudes or latitudes. Hence, we developed a multi-benefits framework to interpret the formation of larger groups by integrating environmental heterogeneity. In cold and diverse environments, even smaller groups require larger home ranges to meet their dynamic survival needs. The spatiotemporal distribution of high-quality resources within these expanded home ranges facilitates more frequent interactions between groups, thereby encouraging social aggregation into larger groups. This process enhances the benefits of collaborative actions and reproductive opportunities, while simultaneously optimizing travel costs through a dynamic foraging strategy.
2024, 45(1): 55-68.
doi: 10.24272/j.issn.2095-8137.2023.007
The gastrointestinal tract is essential for food digestion, nutrient absorption, waste elimination, and microbial defense. Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity, functional heterogeneity, and their importance in intestinal tract development and disease. Although such profiling has been extensively conducted in humans and mice, the single-cell gene expression landscape of the pig cecum remains unexplored. Here, single-cell RNA sequencing was performed on 45 572 cells obtained from seven cecal samples in pigs at four different developmental stages (days (D) 30, 42, 150, and 730). Analysis revealed 12 major cell types and 38 subtypes, as well as their distinctive genes, transcription factors, and regulons, many of which were conserved in humans. An increase in the relative proportions of CD8+ T and Granzyme A (low expression) natural killer T cells (GZMAlow NKT) cells and a decrease in the relative proportions of epithelial stem cells, Tregs, RHEX+ T cells, and plasmacytoid dendritic cells (pDCs) were noted across the developmental stages. Moreover, the post-weaning period exhibited an up-regulation in mitochondrial genes, COX2 and ND2, as well as genes involved in immune activation in multiple cell types. Cell-cell crosstalk analysis indicated that IBP6+ fibroblasts were the main signal senders at D30, whereas IBP6− fibroblasts assumed this role at the other stages. NKT cells established interactions with epithelial cells and IBP6+ fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs. This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.
2024, 45(1): 69-78.
doi: 10.24272/j.issn.2095-8137.2023.138
Birds exhibit extraordinary mobility and remarkable navigational skills, obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement. Bird species also show tremendous diversity in navigation strategies, with considerable differences even within the same taxa and among individuals from the same population. The highly conserved iron and iron-sulfur cluster binding magnetoreceptor (MagR) protein is suggested to enable animals, including birds, to detect the geomagnetic field and navigate accordingly. Notably, MagR is also implicated in other functions, such as electron transfer and biogenesis of iron-sulfur clusters, raising the question of whether variability exists in its biochemical and biophysical features among species, particularly birds. In the current study, we conducted a comparative analysis of MagR from two different bird species, including the migratory European robin and the homing pigeon. Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species, with only three sequence variations. Nevertheless, two of these variations underpinned significant differences in metal binding capacity, oligomeric state, and magnetic properties. These findings offer compelling evidence for the marked differences in MagR between the two avian species, potentially explaining how a highly conserved protein can mediate such diverse functions.
Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein (LBP), but the underlying epigenetic mechanisms remain understudied. Herein, LBP-/- rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency. Notably, LBP-/- reduced the inflammatory response but markedly diminished high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome. In total, 1 128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type (WT) and LBP-/- NAFLD rats. Based on integrative analysis, CCAAT/enhancer-binding protein β (C/EBPβ) was identified as a pivotal transcription factor (TF) and contributor to dysregulated histone acetylome H3K27ac, and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD. This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβ and functional gene SCD as potential regulators and therapeutic targets.
The gut microbiome interacts with the host to maintain body homeostasis, with gut microbial dysbiosis implicated in many diseases. However, the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear. This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation. We conducted succinylome analysis of hippocampal proteins in germ-free (GF) and specific pathogen-free (SPF) mice and metagenomic analysis of feces from SPF mice. These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice. Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins, including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice. We constructed a panoramic map of gut microbiota-regulated succinylation, acetylation, and phosphorylation, and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways. Pearson correlation analysis indicated that 13 taxa, predominantly belonging to the Bacteroidetes phylum, were correlated with the biological functions of post-translational modifications. Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways. This study highlights the hippocampal physiological changes induced by the absence of gut microbiota, and proteomic quantification of succinylation, phosphorylation, and acetylation, contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.
Display Method:
2023, 44(6): 993-1002.
doi: 10.24272/j.issn.2095-8137.2022.495
Targeting key enzymes that generate oxalate precursors or substrates is an alternative strategy to eliminate primary hyperoxaluria type I (PH1), the most common and life-threatening type of primary hyperoxaluria. The compact Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) from the Prevotella and Francisella 1 (Cpf1) protein simplifies multiplex gene editing and allows for all-in-one adeno-associated virus (AAV) delivery. We hypothesized that the multiplex capabilities of the Cpf1 system could help minimize oxalate formation in PH1 by simultaneously targeting the hepatic hydroxyacid oxidase 1 (Hao1) and lactate dehydrogenase A (Ldha) genes. Study cohorts included treated PH1 rats (AgxtQ84X rats injected with AAV-AsCpf1 at 7 days of age), phosphate-buffered saline (PBS)-injected PH1 rats, untreated PH1 rats, and age-matched wild-type (WT) rats. The most efficient and specific CRISPR RNA (crRNA) pairs targeting the rat Hao1 and Ldha genes were initially screened ex vivo. In vivo experiments demonstrated efficient genome editing of the Hao1 and Ldha genes, primarily resulting in small deletions. This resulted in decreased transcription and translational expression of Hao1 and Ldha. Treatment significantly reduced urine oxalate levels, reduced kidney damage, and alleviated nephrocalcinosis in rats with PH1. No liver toxicity, ex-liver genome editing, or obvious off-target effects were detected. We demonstrated the AAV-AsCpf1 system can target multiple genes and rescue the pathogenic phenotype in PH1, serving as a proof-of-concept for the development of multiplex genome editing-based gene therapy.
2023, 44(6): 1003-1014.
doi: 10.24272/j.issn.2095-8137.2023.108
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity. However, the precise mechanisms responsible for the combined impact of coronavirus disease 2019 (COVID-19) and diabetes have not yet been elucidated, and effective treatment options for SARS-CoV-2-infected diabetic patients remain limited. To investigate the disease pathogenesis, K18-hACE2 transgenic (hACE2Tg) mice with a leptin receptor deficiency (hACE2-Lepr-/-) and high-fat diet (hACE2-HFD) background were generated. The two mouse models were intranasally infected with a 5×105 median tissue culture infectious dose (TCID50) of SARS-CoV-2, with serum and lung tissue samples collected at 3 days post-infection. The hACE2-Lepr-/- mice were then administered a combination of low-molecular-weight heparin (LMWH) (1 mg/kg or 5 mg/kg) and insulin via subcutaneous injection prior to intranasal infection with 1×104 TCID50 of SARS-CoV-2. Daily drug administration continued until the euthanasia of the mice. Analyses of viral RNA loads, histopathological changes in lung tissue, and inflammation factors were conducted. Results demonstrated similar SARS-CoV-2 susceptibility in hACE2Tg mice under both lean (chow diet) and obese (HFD) conditions. However, compared to the hACE2-Lepr+/+ mice, hACE2-Lepr-/- mice exhibited more severe lung injury, enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α), and increased apoptosis. Moreover, combined LMWH and insulin treatment effectively reduced disease progression and severity, attenuated lung pathological changes, and mitigated inflammatory responses. In conclusion, pre-existing diabetes can lead to more severe lung damage upon SARS-CoV-2 infection, and LMWH may be a valuable therapeutic approach for managing COVID-19 patients with diabetes.
2023, 44(6): 1015-1025.
doi: 10.24272/j.issn.2095-8137.2023.187
Following the outbreak of coronavirus disease 2019 (COVID-19), several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronaviruses have been discovered. Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats, including RsYN04, which recognizes human angiotensin-converting enzyme 2 (ACE2) and thus poses a potential threat to humans. Here, we screened the binding of the RsYN04 receptor-binding domain (RBD) to ACE2 orthologs from 52 animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2. However, the presence of the T484W mutation in the RsYN04 RBD broadened its range. We also evaluated 44 SARS-CoV-2 antibodies targeting seven epitope communities in the SARS-CoV-2 RBD, together with serum obtained from COVID-19 convalescents and vaccinees, to determine their cross-reaction against RsYN04. Results showed that no antibodies, except for the RBD-6 and RBD-7 classes, bound to the RsYN04 RBD, indicating substantial immune differences from SARS-CoV-2. Furthermore, the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines. Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species, including humans, highlighting the necessity for viral surveillance and development of broad anti-coronavirus countermeasures.
Quantification of behaviors in macaques provides crucial support for various scientific disciplines, including pharmacology, neuroscience, and ethology. Despite recent advancements in the analysis of macaque behavior, research on multi-label behavior detection in socially housed macaques, including consideration of interactions among them, remains scarce. Given the lack of relevant approaches and datasets, we developed the Behavior-Aware Relation Network (BARN) for multi-label behavior detection of socially housed macaques. Our approach models the relationship of behavioral similarity between macaques, guided by a behavior-aware module and novel behavior classifier, which is suitable for multi-label classification. We also constructed a behavior dataset of rhesus macaques using ordinary RGB cameras mounted outside their cages. The dataset included 65 913 labels for 19 behaviors and 60 367 proposals, including identities and locations of the macaques. Experimental results showed that BARN significantly improved the baseline SlowFast network and outperformed existing relation networks. In conclusion, we successfully achieved multi-label behavior detection of socially housed macaques with both economic efficiency and high accuracy.
We describe a unique new species and genus of agamid lizard from the karstic massifs of Khammouan Province, central Laos. Laodracon carsticola Gen. et sp. nov. is an elusive medium-sized lizard (maximum snout-vent length 101 mm) specifically adapted to life on limestone rocks and pinnacles. To assess the phylogenetic position of the new genus amongst other agamids, we generated DNA sequences from two mitochondrial gene fragments (16S rRNA and ND2) and three nuclear loci (BDNF, RAG1 and c-mos), with a final alignment comprising 7 418 base pairs for 64 agamid species. Phylogenetic analyses unambiguously place the new genus in the mainland Asia subfamily Draconinae, where it forms a clade sister to the genus Diploderma from East Asia and the northern part of Southeast Asia. Morphologically, the new genus is distinguished from all other genera in Draconinae by possessing a notably swollen tail base with enlarged scales on its dorsal and ventral surfaces. Our work provides further evidence that limestone regions of Indochina represent unique “arks of biodiversity” and harbor numerous relict lineages. To date, Laodracon carsticola Gen. et sp. nov. is known from only two adult male specimens and its distribution seems to be restricted to a narrow limestone massif on the border of Khammouan and Bolikhamxai provinces of Laos. Additional studies are required to understand its life history, distribution, and conservation status.
Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima’s D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the “genomic islands of speciation”, we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.
The timing of mammalian diversification in relation to the Cretaceous-Paleogene (KPg) mass extinction continues to be a subject of substantial debate. Previous studies have either focused on limited taxonomic samples with available whole-genome data or relied on short sequence alignments coupled with extensive species samples. In the present study, we improved an existing dataset from the landmark study of Meredith et al. (2011) by filling in missing fragments and further generated another dataset containing 120 taxa and 98 exonic markers. Using these two datasets, we then constructed phylogenies for extant mammalian families, providing improved resolution of many conflicting relationships. Moreover, the timetrees generated, which were calibrated using appropriate molecular clock models and multiple fossil records, indicated that the interordinal diversification of placental mammals initiated before the Late Cretaceous period. Additionally, intraordinal diversification of both extant placental and marsupial lineages accelerated after the KPg boundary, supporting the hypothesis that the availability of numerous vacant ecological niches subsequent to the mass extinction event facilitated rapid diversification. Thus, our results support a scenario of placental radiation characterized by both basal cladogenesis and active interordinal divergences spanning from the Late Cretaceous into the Paleogene.
2023, 44(6): 1080-1094.
doi: 10.24272/j.issn.2095-8137.2023.317
Tree shrews (Tupaia belangeri chinensis) share a close relationship to primates and have been widely used in biomedical research. We previously established a spermatogonial stem cell (SSC)-based gene editing platform to generate transgenic tree shrews. However, the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear. Here, we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages. We found that SSCs lost spermatogenesis ability after long-term expansion (>50 passages), as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia (SPG)-derived spermatocytes or spermatids marking spermatogenesis. RNA sequencing (RNA-seq) analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers. Specifically, DNA damage response and repair genes (e.g., MRE11, SMC3, BLM, and GEN1) were down-regulated, whereas genes associated with mitochondrial function (e.g., NDUFA9, NDUFA8, NDUFA13, and NDUFB8) were up-regulated after expansion. The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells. Supplementation with nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide riboside (NR) exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture. Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.
2023, 44(6): 1095-1114.
doi: 10.24272/j.issn.2095-8137.2023.246
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
2023, 44(6): 1115-1131.
doi: 10.24272/j.issn.2095-8137.2023.263
Since the late 2010s, Artificial Intelligence (AI) including machine learning, boosted through deep learning, has boomed as a vital tool to leverage computer vision, natural language processing and speech recognition in revolutionizing zoological research. This review provides an overview of the primary tasks, core models, datasets, and applications of AI in zoological research, including animal classification, resource conservation, behavior, development, genetics and evolution, breeding and health, disease models, and paleontology. Additionally, we explore the challenges and future directions of integrating AI into this field. Based on numerous case studies, this review outlines various avenues for incorporating AI into zoological research and underscores its potential to enhance our understanding of the intricate relationships that exist within the animal kingdom. As we build a bridge between beast and byte realms, this review serves as a resource for envisioning novel AI applications in zoological research that have not yet been explored.
2023, 44(6): 1132-1145.
doi: 10.24272/j.issn.2095-8137.2023.294
Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aβ) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD. Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases. This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models. Finally, the opportunities, difficulties, and future directions of autophagy targeting in AD therapy are discussed.
2023, 44(6): 1146-1151.
doi: 10.24272/j.issn.2095-8137.2023.179
2023, 44(6): 1152-1153.
doi: 10.24272/j.issn.2095-8137.2023.353
2023, 44(6): 1154-1155.
doi: 10.24272/j.issn.2095-8137.2023.357
Changes in protein abundance and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Xizang (Tibet) Plateau (QTP). In total, 5 170 proteins and 5 695 phosphorylation sites in 1 938 proteins were quantified. Based on proteomic analysis, 674 differentially expressed proteins (438 up-regulated, 236 down-regulated) were screened in hibernating N. parkeri versus summer individuals. Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways, whereas lower expressed proteins were mainly involved in metabolic processes. A total of 4 251 modified sites (4 147 up-regulated, 104 down-regulated) belonging to 1 638 phosphoproteins (1 555 up-regulated, 83 down-regulated) were significantly changed in the liver. During hibernation, RPP regulated a diverse array of proteins involved in multiple functions, including metabolic enzymatic activity, ion transport, protein turnover, signal transduction, and alternative splicing. These changes contribute to enhancing protection, suppressing energy-consuming processes, and inducing metabolic depression. Moreover, the activities of phosphofructokinase, glutamate dehydrogenase, and ATPase were all significantly lower in winter compared to summer. In conclusion, our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
Mammalian T-cell responses require synergism between the first signal and co-stimulatory signal. However, whether and how dual signaling regulates the T-cell response in early vertebrates remains unknown. In the present study, we discovered that the Nile tilapia (Oreochromis niloticus) encodes key components of the LAT signalosome, namely, LAT, ITK, GRB2, VAV1, SLP-76, GADS, and PLC-γ1. These components are evolutionarily conserved, and CD3ε mAb-induced T-cell activation markedly increased their expression. Additionally, at least ITK, GRB2, and VAV1 were found to interact with LAT for signalosome formation. Downstream of the first signal, the NF-κB, MAPK/ERK, and PI3K-AKT pathways were activated upon CD3ε mAb stimulation. Furthermore, treatment of lymphocytes with CD28 mAbs triggered the AKT-mTORC1 pathway downstream of the co-stimulatory signal. Combined CD3ε and CD28 mAb stimulation enhanced ERK1/2 and S6 phosphorylation and elevated NFAT1, c-Fos, IL-2, CD122, and CD44 expression, thereby signifying T-cell activation. Moreover, rather than relying on the first or co-stimulatory signal alone, both signals were required for T-cell proliferation. Full T-cell activation was accompanied by marked apoptosis and cytotoxic responses. These findings suggest that tilapia relies on dual signaling to maintain an optimal T-cell response, providing a novel perspective for understanding the evolution of the adaptive immune system.
Long non-coding RNAs (lncRNAs) function as key modulators in mammalian immunity, particularly due to their involvement in lncRNA-mediated competitive endogenous RNA (ceRNA) crosstalk. Despite their recognized significance in mammals, research on lncRNAs in lower vertebrates remains limited. In the present study, we characterized the first immune-related lncRNA (pol-lnc78) in the teleost Japanese flounder (Paralichthys olivaceus). Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein (SARM), the fifth discovered member of the Toll/interleukin 1 (IL-1) receptor (TIR) adaptor family. This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor (TLR) signaling pathway. Specifically, SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1β and tumor necrosis factor-α (TNF-α). Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’ untranslated region (UTR), thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination. Furthermore, pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression. During infection, the negative regulators pol-lnc78 and SARM were significantly down-regulated, while pol-miR-n199-3p was significantly up-regulated, thus favoring host antibacterial defense. These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
The dynamics of animal social structures are heavily influenced by environmental patterns of competition and cooperation. In folivorous colobine primates, prevailing theories suggest that larger group sizes should be favored in rainforests with a year-round abundance of food, thereby reducing feeding competition. Yet, paradoxically, larger groups are frequently found in high-altitude or high-latitude montane ecosystems characterized by a seasonal scarcity of leaves. This contradiction is posited to arise from cooperative benefits in heterogeneous environments. To investigate this hypothesis, we carried out a six-year field study on two neighboring groups of golden snub-nosed monkey (Rhinopithecus roxellana), a species representing the northernmost distribution of colobine primates. Results showed that the groups adjusted their movement and habitat selection in response to fluctuating climates and spatiotemporal variability of resources, indicative of a dynamic foraging strategy. Notably, during the cold, resource-scarce conditions in winter, the large group occupied food-rich habitats but did not exhibit significantly longer daily travel distances than the smaller neighboring group. Subsequently, we compiled an eco-behavioral dataset of 52 colobine species to explore their evolutionary trajectories. Analysis of this dataset suggested that the increase in group size may have evolved via home range expansion in response to the cold and heterogeneous climates found at higher altitudes or latitudes. Hence, we developed a multi-benefits framework to interpret the formation of larger groups by integrating environmental heterogeneity. In cold and diverse environments, even smaller groups require larger home ranges to meet their dynamic survival needs. The spatiotemporal distribution of high-quality resources within these expanded home ranges facilitates more frequent interactions between groups, thereby encouraging social aggregation into larger groups. This process enhances the benefits of collaborative actions and reproductive opportunities, while simultaneously optimizing travel costs through a dynamic foraging strategy.
The gastrointestinal tract is essential for food digestion, nutrient absorption, waste elimination, and microbial defense. Single-cell transcriptome profiling of the intestinal tract has greatly enriched our understanding of cellular diversity, functional heterogeneity, and their importance in intestinal tract development and disease. Although such profiling has been extensively conducted in humans and mice, the single-cell gene expression landscape of the pig cecum remains unexplored. Here, single-cell RNA sequencing was performed on 45 572 cells obtained from seven cecal samples in pigs at four different developmental stages (days (D) 30, 42, 150, and 730). Analysis revealed 12 major cell types and 38 subtypes, as well as their distinctive genes, transcription factors, and regulons, many of which were conserved in humans. An increase in the relative proportions of CD8+ T and Granzyme A (low expression) natural killer T cells (GZMAlow NKT) cells and a decrease in the relative proportions of epithelial stem cells, Tregs, RHEX+ T cells, and plasmacytoid dendritic cells (pDCs) were noted across the developmental stages. Moreover, the post-weaning period exhibited an up-regulation in mitochondrial genes, COX2 and ND2, as well as genes involved in immune activation in multiple cell types. Cell-cell crosstalk analysis indicated that IBP6+ fibroblasts were the main signal senders at D30, whereas IBP6− fibroblasts assumed this role at the other stages. NKT cells established interactions with epithelial cells and IBP6+ fibroblasts in the D730 cecum through mediation of GZMA-F2RL1/F2RL2 pairs. This study provides valuable insights into cellular heterogeneity and function in the pig cecum at different development stages.
Birds exhibit extraordinary mobility and remarkable navigational skills, obtaining guidance cues from the Earth’s magnetic field for orientation and long-distance movement. Bird species also show tremendous diversity in navigation strategies, with considerable differences even within the same taxa and among individuals from the same population. The highly conserved iron and iron-sulfur cluster binding magnetoreceptor (MagR) protein is suggested to enable animals, including birds, to detect the geomagnetic field and navigate accordingly. Notably, MagR is also implicated in other functions, such as electron transfer and biogenesis of iron-sulfur clusters, raising the question of whether variability exists in its biochemical and biophysical features among species, particularly birds. In the current study, we conducted a comparative analysis of MagR from two different bird species, including the migratory European robin and the homing pigeon. Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species, with only three sequence variations. Nevertheless, two of these variations underpinned significant differences in metal binding capacity, oligomeric state, and magnetic properties. These findings offer compelling evidence for the marked differences in MagR between the two avian species, potentially explaining how a highly conserved protein can mediate such diverse functions.
Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein (LBP), but the underlying epigenetic mechanisms remain understudied. Herein, LBP-/- rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency. Notably, LBP-/- reduced the inflammatory response but markedly diminished high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome. In total, 1 128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type (WT) and LBP-/- NAFLD rats. Based on integrative analysis, CCAAT/enhancer-binding protein β (C/EBPβ) was identified as a pivotal transcription factor (TF) and contributor to dysregulated histone acetylome H3K27ac, and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD. This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβ and functional gene SCD as potential regulators and therapeutic targets.
The gut microbiome interacts with the host to maintain body homeostasis, with gut microbial dysbiosis implicated in many diseases. However, the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear. This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation. We conducted succinylome analysis of hippocampal proteins in germ-free (GF) and specific pathogen-free (SPF) mice and metagenomic analysis of feces from SPF mice. These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice. Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins, including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice. We constructed a panoramic map of gut microbiota-regulated succinylation, acetylation, and phosphorylation, and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways. Pearson correlation analysis indicated that 13 taxa, predominantly belonging to the Bacteroidetes phylum, were correlated with the biological functions of post-translational modifications. Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways. This study highlights the hippocampal physiological changes induced by the absence of gut microbiota, and proteomic quantification of succinylation, phosphorylation, and acetylation, contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.

Vol 44, No 6 (18 November 2023)
Indexed by SCI-E
2022 Impact Factor 4.9
2/176 Zoology (Q1)
2023 Journal Citation Reports®
中科院期刊分区动物学一区
Bimonthly, Since 1980
Editor-in-Chief: Yong-Gang Yao
ISSN 2095-8137
CN 53-1229/Q
ZR NewsMore >
- Presubmission Inquiries: Zoological ResearchNew
- Zoological Research Call for Papers: Pain, Addiction, and AnesthesiaNew
- Zoological Research Call for Papers: Special Issue on Single-Cell and Spatial-OmicsNew
- “2023 Frontiers in Zoology Symposium” The 3rd Round Meeting Announcement
- Obituary: Professor Yun Zhang (1963-2023)
- “2023 Frontiers in Zoology Symposium” The 1st Round Meeting Announcement
- ZRDC Call for Papers: Special issue on insular habitat fragmentation induced by hydroelectric dams: an emerging threat to biodiversityNew
- Call for papers: Cavefish Special Issue
- Acknowledgments to reviewers of Zoological ResearchNew
- Two Editorial Board Members of Zoological Research Elected to the National Academy of Sciences
Most ReadMost Cited
- 1The Method of Look for Nests of Wasps
- 2Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species
- 3Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?
- 4Chromosome Studies of Mammals
- 5Hiding on jagged karst pinnacles: A new microendemic genus and species of a limestone-dwelling agamid lizard (Squamata: Agamidae: Draconinae) from Khammouan Province, Laos