Citation: | Gao-Ming Liu, Qi Pan, Juan Du, Ping-Fen Zhu, Wei-Qiang Liu, Zi-Hao Li, Ling Wang, Chun-Yan Hu, Yi-Chen Dai, Xiao-Xiao Zhang, Zhan Zhang, Yang Yu, Meng Li, Peng-Cheng Wang, Xiao Wang, Ming Li, Xu-Ming Zhou. Improved mammalian family phylogeny using gap-rare multiple sequence alignment: A timetree of extant placentals and marsupials. Zoological Research, 2023, 44(6): 1064-1079. doi: 10.24272/j.issn.2095-8137.2023.189 |
[1] |
Álvarez-Carretero S, Tamuri AU, Battini M, et al. 2022. A species-level timeline of mammal evolution integrating phylogenomic data.
|
[2] |
Archer M, Beck R, Gott M, et al. 2011. Australia's first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins.
|
[3] |
Archibald JD, Deutschman DH. 2001. Quantitative analysis of the timing of the origin and diversification of extant placental orders.
|
[4] |
Arnason U, Gullberg A, Janke A, et al. 2007. Mitogenomic analyses of caniform relationships.
|
[5] |
Beck RMD. 2008. A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints.
|
[6] |
Beck RMD, Travouillon KJ, Aplin KP, et al. 2014. The osteology and systematics of the enigmatic australian oligo-miocene metatherian Yalkaparidon (Yalkaparidontidae; Yalkaparidontia;? Australidelphia; Marsupialia).
|
[7] |
Betancur-R R, Li CH, Munroe TA, et al. 2013. Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes).
|
[8] |
Bininda-Emonds ORP, Cardillo M, Jones KE, et al. 2007. The delayed rise of present-day mammals.
|
[9] |
Blanga-Kanfi S, Miranda H, Penn O, et al. 2009. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades.
|
[10] |
Brace S, Thomas JA, Dalén L, et al. 2016. Evolutionary history of the Nesophontidae, the last unplaced recent mammal family.
|
[11] |
Chen MY, Liang D, Zhang P. 2017. Phylogenomic resolution of the phylogeny of Laurasiatherian mammals: exploring phylogenetic signals within coding and noncoding sequences.
|
[12] |
Chen Z, Xu SX, Zhou KY, et al. 2011. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences.
|
[13] |
Churakov G, Sadasivuni MK, Rosenbloom KR, et al. 2010. Rodent evolution: back to the root.
|
[14] |
Collins TM, Fedrigo O, Naylor GJ. 2005. Choosing the best genes for the job: the case for stationary genes in genome-scale phylogenetics.
|
[15] |
Delsuc F, Ranwez V. 2020. Accurate alignment of (meta)barcoding data sets using MACSE. In: Scornavacca C, Delsuc F, Galtier N. Phylogenetics in the Genomic Era. No Commercial Publisher, 2.3: 1–2.3: 31.
|
[16] |
Di Franco A, Poujol R, Baurain D, et al. 2019. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences.
|
[17] |
Dilcher D. 2000. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences of the United States of America, 97(13): 7030−7036.
|
[18] |
Doronina L, Churakov G, Kuritzin A, et al. 2017a. Speciation network in Laurasiatheria: retrophylogenomic signals.
|
[19] |
Doronina L, Churakov G, Shi JJ, et al. 2015. Exploring massive incomplete lineage sorting in arctoids (Laurasiatheria, Carnivora). Molecular Biology and Evolution, 32(12): 3194−3204.
|
[20] |
Doronina L, Feigin CY, Schmitz J. 2022. Reunion of Australasian possums by shared SINE insertions.
|
[21] |
Doronina L, Matzke A, Churakov G, et al. 2017b. The beaver’s phylogenetic lineage illuminated by retroposon reads.
|
[22] |
dos Reis M, Donoghue PCJ, Yang ZH. 2014. Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals.
|
[23] |
dos Reis M, Donoghue PCJ, Yang ZH. 2016. Bayesian molecular clock dating of species divergences in the genomics era.
|
[24] |
dos Reis M, Inoue J, Hasegawa M, et al. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny.
|
[25] |
dos Reis M, Thawornwattana Y, Angelis K, et al. 2015. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales.
|
[26] |
dos Reis MD, Gunnell GF, Barba-Montoya J, et al. 2018. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case.
|
[27] |
Duchêne DA, Bragg JG, Duchêne S, et al. 2018. Analysis of phylogenomic tree space resolves relationships among marsupial families.
|
[28] |
Duff A, Lawson A. 2004. Mammals of the World. A Checklist. London: A and C Black.
|
[29] |
Edwards SV. 2009. Is a new and general theory of molecular systematics emerging?.
|
[30] |
Emerling CA, Huynh HT, Nguyen MA, et al. 2015. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
|
[31] |
Esselstyn JA, Oliveros CH, Swanson MT, et al. 2017. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements.
|
[32] |
Etienne RS, Pigot AL, Phillimore AB. 2016. How reliably can we infer diversity-dependent diversification from phylogenies?.
|
[33] |
Feijoo M, Parada A. 2017. Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage.
|
[34] |
Foley NM, Mason VC, Harris AJ, et al. 2023. A genomic timescale for placental mammal evolution.
|
[35] |
Foley NM, Springer MS, Teeling EC. 2016. Mammal madness: is the mammal tree of life not yet resolved?.
|
[36] |
Gatesy J, Meredith RW, Janecka JE, et al. 2017. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family-level tree for Mammalia.
|
[37] |
Gatesy J, Springer MS. 2017. Phylogenomic red flags: homology errors and zombie lineages in the evolutionary diversification of placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 114(45): E9431−E9432.
|
[38] |
Grossnickle DM, Newham E. 2016. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary.
|
[39] |
Gu ZG, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data.
|
[40] |
Guo YT, Zhang J, Xu DM, et al. 2021. Phylogenomic relationships and molecular convergences to subterranean life in rodent family Spalacidae.
|
[41] |
He K, Chen X, Chen P, et al. 2018. A new genus of Asiatic short-tailed shrew (Soricidae, Eulipotyphla) based on molecular and morphological comparisons.
|
[42] |
Höhna S, Landis MJ, Heath TA, et al. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language.
|
[43] |
Hu JY, Zhang YP, Yu L. 2012. Summary of Laurasiatheria (Mammalia) phylogeny. Zoological Research, 33(E5-6): 65−74.
|
[44] |
Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and visualization of phylogenomic data.
|
[45] |
International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome.
|
[46] |
Ivanova NV, Clare EL, Borisenko AV. 2012. DNA barcoding in mammals. In: Kress WJ, Erickson DL. DNA Barcodes. Totowa: Humana Press, 153–182.
|
[47] |
Jebb D, Huang ZX, Pippel M, et al. 2020. Six reference-quality genomes reveal evolution of bat adaptations.
|
[48] |
Katoh K, Misawa K, Kuma KI, et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.
|
[49] |
Kay RF, Macfadden BJ, Madden RH, et al. 1998. Revised age of the Salla beds, Bolivia, and its bearing on the age of the Deseadan South American Land Mammal “Age”.
|
[50] |
Kozlov AM, Darriba D, Flouri T, et al. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.
|
[51] |
Lambert O, Martínez-Cáceres M, Bianucci G, et al. 2017. Earliest mysticete from the Late Eocene of Peru sheds new light on the origin of baleen whales.
|
[52] |
Lanfear R, Frandsen PB, Wright AM, et al. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
|
[53] |
Lavergne A, Douzery E, Stichler T, et al. 1996. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.
|
[54] |
Lee MSY, Hugall AF. 2003. Partitioned likelihood support and the evaluation of data set conflict.
|
[55] |
Lin JN, Chen GF, Gu L, et al. 2014. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate.
|
[56] |
Liu L, Zhang J, Rheindt FE, et al. 2017. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proceedings of the National Academy of Sciences of the United States of America, 114(35): E7282−E7290.
|
[57] |
Lv X, Hu JY, Hu YW, et al. 2021. Diverse phylogenomic datasets uncover a concordant scenario of Laurasiatherian interordinal relationships.
|
[58] |
Magallón S, Gómez-Acevedo S, Sánchez-Reyes L, et al. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.
|
[59] |
Maliet O, Hartig F, Morlon H. 2019. A model with many small shifts for estimating species-specific diversification rates. Nature Ecology & Evolution, 3(7): 1086−1092.
|
[60] |
May-Collado LJ, Kilpatrick CW, Agnarsson I. 2015. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria).
|
[61] |
McCormack JE, Faircloth BC, Crawford NG, et al. 2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis.
|
[62] |
McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, et al. 2020. Phylogenomic resolution of the cetacean tree of life using target sequence capture.
|
[63] |
Meredith RW, Janečka JE, Gatesy J, et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.
|
[64] |
Meredith RW, Westerman M, Springer MS. 2009. A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes.
|
[65] |
Meyer CP. 2003. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics.
|
[66] |
Minh BQ, Schmidt HA, Chernomor O, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.
|
[67] |
Missoup AD, Yemchui GD, Denys C, et al. 2018. Molecular phylogenetic analyses indicate paraphyly of the genus Hybomys (Rodentia: Muridae): taxonomic implications.
|
[68] |
Mitchell KJ, Pratt RC, Watson LN, et al. 2014. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.
|
[69] |
Montgelard C, Forty E, Arnal V, et al. 2008. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments.
|
[70] |
Morlon H, Lewitus E, Condamine FL, et al. 2016. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees.
|
[71] |
Murata Y, Nikaido M, Sasaki T, et al. 2003. Afrotherian phylogeny as inferred from complete mitochondrial genomes.
|
[72] |
Murphy WJ, Foley NM, Bredemeyer KR, et al. 2021. Phylogenomics and the genetic architecture of the placental mammal Radiation.
|
[73] |
Nabholz B, Künstner A, Wang R, et al. 2011. Dynamic evolution of base composition: causes and consequences in avian phylogenomics.
|
[74] |
Narita Y, Oda SI, Takenaka O, et al. 2001. Phylogenetic position of Eulipotyphla inferred from the cDNA sequences of pepsinogens A and C.
|
[75] |
Nishihara H, Satta Y, Nikaido M, et al. 2005. A retroposon analysis of Afrotherian phylogeny.
|
[76] |
Phillips MJ. 2016. Geomolecular dating and the origin of placental mammals.
|
[77] |
Phillips MJ, Pratt RC. 2008. Family-level relationships among the Australasian marsupial “herbivores” (Diprotodontia: Koala, wombats, kangaroos and possums).
|
[78] |
Politis DN, Romano JP. 1994. The stationary bootstrap.
|
[79] |
Puttick MN, Thomas GH. 2015. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.
|
[80] |
Puttick MN, Thomas GH, Benton MJ. 2016. Dating placentalia: morphological clocks fail to close the molecular fossil gap.
|
[81] |
Rabosky DL. 2006. Likelihood methods for detecting temporal shifts in diversification rates. Evolution, 60(6): 1152−1164.
|
[82] |
Rabosky DL, Grundler M, Anderson C, et al. 2014. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees.
|
[83] |
Ranwez V, Douzery EJP, Cambon C, et al. 2018. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons.
|
[84] |
Rodríguez-Ezpeleta N, Brinkmann H, Roure B, et al. 2007. Detecting and overcoming systematic errors in genome-scale phylogenies.
|
[85] |
Romiguier J, Ranwez V, Delsuc F, et al. 2013a. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.
|
[86] |
Romiguier J, Ranwez V, Douzery EJP, et al. 2013b. Genomic evidence for large, long-lived ancestors to placental mammals.
|
[87] |
Ronquist F, Teslenko M, van der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
|
[88] |
Sato JJ, Bradford TM, Armstrong KN, et al. 2019. Post K-Pg diversification of the mammalian order Eulipotyphla as suggested by phylogenomic analyses of ultra-conserved elements.
|
[89] |
Sayyari E, Whitfield JB, Mirarab S. 2018. DiscoVista: interpretable visualizations of gene tree discordance.
|
[90] |
Scornavacca C, Belkhir K, Lopez J, et al. 2019. OrthoMaM v10: scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes.
|
[91] |
Scornavacca C, Galtier N. 2017. Incomplete lineage sorting in mammalian phylogenomics. Systematic Biology, 66(1): 112−120.
|
[92] |
Shen XX, Hittinger CT, Rokas A. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution, 1(5): 0126.
|
[93] |
Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference.
|
[94] |
Shimodaira H, Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection.
|
[95] |
Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection.
|
[96] |
Song S, Liu L, Edwards SV, et al. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences of the United States of America, 109(37): 14942−14947.
|
[97] |
Springer MS, Emerling CA, Meredith RW, et al. 2017. Waking the undead: implications of a soft explosive model for the timing of placental mammal diversification.
|
[98] |
Springer MS, Foley NM, Brady PL, et al. 2019. Evolutionary models for the diversification of placental mammals across the KPg boundary.
|
[99] |
Springer MS, Murphy WJ, Eizirik E, et al. 2003. Placental mammal diversification and the Cretaceous–Tertiary boundary. Proceedings of the National Academy of Sciences of the United States of America, 100(3): 1056−1061.
|
[100] |
Springer MS, Woodburne MO. 1989. The distribution of some basicranial characters within the Marsupialia and a phylogeny of the Phalangeriformes.
|
[101] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
|
[102] |
Steenwyk JL, Buida III TJ, Labella AL, et al. 2021. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data.
|
[103] |
Steppan SJ, Adkins RM, Anderson J. 2004. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes.
|
[104] |
Steppan SJ, Schenk JJ. 2017. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates.
|
[105] |
Swanson MT, Oliveros CH, Esselstyn JA. 2019. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures.
|
[106] |
Tarver JE, dos Reis M, Mirarab S, et al. 2016. The interrelationships of placental mammals and the limits of phylogenetic inference.
|
[107] |
Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation.
|
[108] |
Wible JR, Rougier GW, Novacek MJ, et al. 2007. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary.
|
[109] |
Wickham H, Chang W, Wickham MH. 2016. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version, 2(1): 1−189.
|
[110] |
Wildman DE, Jameson NM, Opazo JC, et al. 2009. A fully resolved genus level phylogeny of neotropical primates (Platyrrhini).
|
[111] |
Yang ZH. 1994. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39(1): 105−111.
|
[112] |
Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
|
[113] |
Yu L, Luan PT, Jin W, et al. 2011. Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora).
|
[114] |
Zhang C, Sayyari E, Mirarab S. 2017. ASTRAL-III: increased scalability and impacts of contracting low support branches. In: Proceedings of the 15th International Workshop on RECOMB International Workshop on Comparative Genomics. Barcelona, Spain: Springer, 53–75.
|
[115] |
Zhou XM, Xu SX, Xu JX, et al. 2012. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the Laurasiatherian mammals.
|
[116] |
Zhou XM, Xu SX, Yang YX, et al. 2011. Phylogenomic analyses and improved resolution of Cetartiodactyla.
|
![]() |
![]() |