Turn off MathJax
Article Contents
Yong-Gang Niu, Deng-Bang Wei, Xue-Jing Zhang, Ti-Sen Xu, Xiang-Yong Li, Hai-Ying Zhang, Zhi-Fang An, Kenneth B. Storey, Qiang Chen. Surviving winter on the Qinghai-Xizang Plateau: Extensive reversible protein phosphorylation plays a dominant role in regulating hypometabolism in hibernating Nanorana parkeri. Zoological Research, 2024, 45(1): 1-12. doi: 10.24272/j.issn.2095-8137.2023.171
Citation: Yong-Gang Niu, Deng-Bang Wei, Xue-Jing Zhang, Ti-Sen Xu, Xiang-Yong Li, Hai-Ying Zhang, Zhi-Fang An, Kenneth B. Storey, Qiang Chen. Surviving winter on the Qinghai-Xizang Plateau: Extensive reversible protein phosphorylation plays a dominant role in regulating hypometabolism in hibernating Nanorana parkeri. Zoological Research, 2024, 45(1): 1-12. doi: 10.24272/j.issn.2095-8137.2023.171

Surviving winter on the Qinghai-Xizang Plateau: Extensive reversible protein phosphorylation plays a dominant role in regulating hypometabolism in hibernating Nanorana parkeri

doi: 10.24272/j.issn.2095-8137.2023.171
The mass spectrometry proteomic and phosphoproteomic data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD042165). The dataset is deposited in the Science Data Bank (https://www.scidb.cn/) under DOI: 10.57760/sciencedb.j00139.00079.
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
Y.G.N. and D.B.W. conceived and designed the project. Y.G.N., X.J.Z., T.S.X., X.Y.L., H.Y.Z., and Z.F.A. performed the experiments. Y.G.N. and X.J.Z. analyzed the data. T.S.X. and X.Y.L. collected the samples. Y.G.N. and X.J.Z. prepared the first draft of the manuscript. D.B.W., K.B.S., and Q.C. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the National Natural Science Foundation of China (32001110), Training Program for Cultivating High-level Talents by the China Scholarship Council (2021lxjjw01), and Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (2021-KF-004)
More Information
  • Corresponding author: E-mail: yonggangniu@126.com
  • Received Date: 2023-07-05
  • Accepted Date: 2023-07-19
  • Published Online: 2023-09-12
  • Changes in protein abundance and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Xizang (Tibet) Plateau (QTP). In total, 5 170 proteins and 5 695 phosphorylation sites in 1 938 proteins were quantified. Based on proteomic analysis, 674 differentially expressed proteins (438 up-regulated, 236 down-regulated) were screened in hibernating N. parkeri versus summer individuals. Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways, whereas lower expressed proteins were mainly involved in metabolic processes. A total of 4 251 modified sites (4 147 up-regulated, 104 down-regulated) belonging to 1 638 phosphoproteins (1 555 up-regulated, 83 down-regulated) were significantly changed in the liver. During hibernation, RPP regulated a diverse array of proteins involved in multiple functions, including metabolic enzymatic activity, ion transport, protein turnover, signal transduction, and alternative splicing. These changes contribute to enhancing protection, suppressing energy-consuming processes, and inducing metabolic depression. Moreover, the activities of phosphofructokinase, glutamate dehydrogenase, and ATPase were all significantly lower in winter compared to summer. In conclusion, our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
  • The mass spectrometry proteomic and phosphoproteomic data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD042165). The dataset is deposited in the Science Data Bank (https://www.scidb.cn/) under DOI: 10.57760/sciencedb.j00139.00079.
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    Y.G.N. and D.B.W. conceived and designed the project. Y.G.N., X.J.Z., T.S.X., X.Y.L., H.Y.Z., and Z.F.A. performed the experiments. Y.G.N. and X.J.Z. analyzed the data. T.S.X. and X.Y.L. collected the samples. Y.G.N. and X.J.Z. prepared the first draft of the manuscript. D.B.W., K.B.S., and Q.C. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Bárdos JI, Ashcroft M. 2005. Negative and positive regulation of HIF-1: a complex network. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1755(2): 107−120. doi: 10.1016/j.bbcan.2005.05.001
    [2]
    Barger PM, Kelly DP. 2000. PPAR signaling in the control of cardiac energy metabolism. Trends in Cardiovascular Medicine, 10(6): 238−245. doi: 10.1016/S1050-1738(00)00077-3
    [3]
    Bartrons M, Ortega E, Obach M, et al. 2004. Activation of AMP-dependent protein kinase by hypoxia and hypothermia in the liver of frog Rana perezi. Cryobiology, 49(2): 190–194.
    [4]
    Boutilier RG, Donohoe PH, Tattersall GJ, et al. 1997. Hypometabolic homeostasis in overwintering aquatic amphibians. Journal of Experimental Biology, 200(2): 387−400. doi: 10.1242/jeb.200.2.387
    [5]
    Britton CH, Mackey DW, Esser V, et al. 1997. Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics, 40(1): 209−211. doi: 10.1006/geno.1996.4539
    [6]
    Capraro A, O’meally D, Waters SA, et al. 2019. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps. BMC Genomics, 20(1): 460. doi: 10.1186/s12864-019-5750-x
    [7]
    Clausen T. 1986. Regulation of active Na+-K+ transport in skeletal muscle. Physiological Reviews, 66(3): 542−580. doi: 10.1152/physrev.1986.66.3.542
    [8]
    Dawson NJ, Storey KB. 2016. A hydrogen peroxide safety valve: the reversible phosphorylation of catalase from the freeze-tolerant North American wood frog. Rana sylvatica. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(3): 476−485. doi: 10.1016/j.bbagen.2015.12.007
    [9]
    Degracia DJ, Kumar R, Owen CR, et al. 2002. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. Journal of Cerebral Blood Flow & Metabolism, 22(2): 127−141.
    [10]
    Dieni CA, Storey KB. 2009. Creatine kinase regulation by reversible phosphorylation in frog muscle. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 152(4): 405−412. doi: 10.1016/j.cbpb.2009.01.012
    [11]
    Dieni CA, Storey KB. 2010. Regulation of glucose-6-phosphate dehydrogenase by reversible phosphorylation in liver of a freeze tolerant frog. Journal of Comparative Physiology B, 180(8): 1133−1142. doi: 10.1007/s00360-010-0487-5
    [12]
    Dieni CA, Storey KB. 2011. Regulation of hexokinase by reversible phosphorylation in skeletal muscle of a freeze-tolerant frog. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 159(4): 236−243. doi: 10.1016/j.cbpb.2011.05.003
    [13]
    Donohoe PH, Boutilier RG. 1998. The protective effects of metabolic rate depression in hypoxic cold submerged frogs. Respiration Physiology, 111(3): 325−336. doi: 10.1016/S0034-5687(97)00125-4
    [14]
    Feidantsis K, Anestis A, Vasara E, et al. 2012. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 162(4): 331−339.
    [15]
    Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, 8(10): 774−785. doi: 10.1038/nrm2249
    [16]
    Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4): 251−262. doi: 10.1038/nrm3311
    [17]
    Hawkins LJ, Wang MJ, Zhang BW, et al. 2019. Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 30: 1−13. doi: 10.1016/j.cbd.2019.01.009
    [18]
    Healy TM, Schulte PM. 2019. Patterns of alternative splicing in response to cold acclimation in fish. Journal of Experimental Biology, 222(5): jeb193516.
    [19]
    Hermes-Lima M, Storey JM, Storey KB. 1998. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 120(3): 437−448. doi: 10.1016/S0305-0491(98)10053-6
    [20]
    Horman S, Browne GJ, Krause U, et al. 2002. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Current Biology, 12(16): 1419−1423. doi: 10.1016/S0960-9822(02)01077-1
    [21]
    Huang YF, Yang S, Bai XB, et al. 2021. Molecular and cellular mechanisms of lipid droplet breakdown in the liver of Chinese soft-shelled turtle (Pelodiscus sinensis). Frontiers in Marine Science, 8: 633425. doi: 10.3389/fmars.2021.633425
    [22]
    Jin L, Yu JP, Yang ZJ, et al. 2018. Modulation of gene expression in liver of hibernating Asiatic toads (Bufo gargarizans). International Journal of Molecular Sciences, 19(8): 2363. doi: 10.3390/ijms19082363
    [23]
    Kallio PJ, Pongratz I, Gradin K, et al. 1997. Activation of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 94(11): 5667−5672.
    [24]
    Kiss AJ, Muir TJ, Lee Jr RE, et al. 2011. Seasonal variation in the hepatoproteome of the dehydration- and freeze-tolerant wood frog. Rana sylvatica. International Journal of Molecular Sciences, 12(12): 8406−8414. doi: 10.3390/ijms12128406
    [25]
    Larson DJ, Middle L, Vu H, et al. 2014. Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance. Journal of Experimental Biology, 217(12): 2193−2200.
    [26]
    Lillig CH, Berndt C, Holmgren A. 2008. Glutaredoxin systems. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(11): 1304−1317. doi: 10.1016/j.bbagen.2008.06.003
    [27]
    Lin JQ, Huang YY, Bian MY, et al. 2020. A unique energy-saving strategy during hibernation revealed by multi-omics analysis in the Chinese alligator. iScience, 23(6): 101202. doi: 10.1016/j.isci.2020.101202
    [28]
    Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radical Biology and Medicine, 66: 75−87. doi: 10.1016/j.freeradbiomed.2013.07.036
    [29]
    Lu Y, Li XY, Zhao K, et al. 2022. Proteomic and phosphoproteomic profiling reveals the oncogenic role of protein kinase D family kinases in cholangiocarcinoma. Cells, 11(19): 3088. doi: 10.3390/cells11193088
    [30]
    Ma X, Lu X, Merilä J. 2009. Altitudinal decline of body size in a Tibetan frog. Journal of Zoology, 279(4): 364−371. doi: 10.1111/j.1469-7998.2009.00627.x
    [31]
    MacDonald JA. 2004. Signal transduction pathways and the control of cellular responses to external stimuli. In: Storey KB. Functional Metabolism: Regulation and Adaptation. New York: Wiley-Liss, 87–123.
    [32]
    Matlin AJ, Clark F, Smith CWJ. 2005. Understanding alternative splicing: towards a cellular code. Nature Reviews Molecular Cell Biology, 6(5): 386−398. doi: 10.1038/nrm1645
    [33]
    McMullen DC, Ramnanan CJ, Storey KB. 2010. In cold-hardy insects, seasonal, temperature, and reversible phosphorylation controls regulate sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Physiological and Biochemical Zoology, 83(4): 677−686. doi: 10.1086/653489
    [34]
    McMullen DC, Storey KB. 2008. Suppression of Na+K+-ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect. Journal of Insect Physiology, 54(6): 1023−1027. doi: 10.1016/j.jinsphys.2008.04.001
    [35]
    Nelson RJ, Demas GE. 1996. Seasonal changes in immune function. The Quarterly Review of Biology, 71(4): 511−548. doi: 10.1086/419555
    [36]
    Niu YG, Cao WJ, Storey KB, et al. 2020. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog. Nanorana parkeri. Journal of Comparative Physiology B, 190(4): 433−444. doi: 10.1007/s00360-020-01275-4
    [37]
    Niu YG, Cao WJ, Wang JZ, et al. 2021a. Freeze tolerance and the underlying metabolite responses in the Xizang plateau frog. Nanorana parkeri. Journal of Comparative Physiology B, 191(1): 173−184. doi: 10.1007/s00360-020-01314-0
    [38]
    Niu YG, Cao WJ, Zhao YF, et al. 2018. The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 219220: 19–27.
    [39]
    Niu YG, Chen Q, Storey KB, et al. 2022a. Physiological ecology of winter hibernation by the high-altitude frog Nanorana parkeri. Physiological and Biochemical Zoology, 95(3): 201–211.
    [40]
    Niu YG, Zhang XJ, Men SK, et al. 2023. Integrated analysis of transcriptome and metabolome data reveals insights for molecular mechanisms in overwintering Tibetan frogs. Nanorana parkeri. Frontiers in Physiology, 13: 1104476. doi: 10.3389/fphys.2022.1104476
    [41]
    Niu YG, Zhang XJ, Xu TS, et al. 2022b. Physiological and biochemical adaptations to high altitude in Tibetan frogs. Nanorana parkeri. Frontiers in Physiology, 13: 942037. doi: 10.3389/fphys.2022.942037
    [42]
    Niu YG, Zhang XJ, Zhang HY, et al. 2021b. Antioxidant and non-specific immune defenses in partially freeze-tolerant Xizang plateau frogs. Nanorana parkeri. Journal of Thermal Biology, 102: 103132. doi: 10.1016/j.jtherbio.2021.103132
    [43]
    Niu YG, Zhang XJ, Zhang HY, et al. 2021c. Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis. Frontiers in Zoology, 18(1): 41. doi: 10.1186/s12983-021-00428-7
    [44]
    Pakay JL, Hobbs AA, Kimball SR, et al. 2003. The role of eukaryotic initiation factor 2α during the metabolic depression associated with estivation. Journal of Experimental Biology, 206(14): 2363−2371. doi: 10.1242/jeb.00422
    [45]
    Pinder AW, Storey KB, Ultsch GR. 1992. Estivation and hibernation. In: Feder ME, Burggren WW. Environmental Physiology of the Amphibians. Chicago: University of Chicago Press, 250–274.
    [46]
    Rider MH. 2016. Role of AMP-activated protein kinase in metabolic depression in animals. Journal of Comparative Physiology B, 186(1): 1−16. doi: 10.1007/s00360-015-0920-x
    [47]
    Semenza GL. 2001. HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology, 13(2): 167−171. doi: 10.1016/S0955-0674(00)00194-0
    [48]
    Shi HZ, Wang J, Liu F, et al. 2020. Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra). Journal of Proteomics, 229: 103866. doi: 10.1016/j.jprot.2020.103866
    [49]
    Storey KB, Storey JM. 1990. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. The Quarterly Review of Biology, 65(2): 145−174. doi: 10.1086/416717
    [50]
    Storey KB, Storey JM. 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews, 79(1): 207−233. doi: 10.1017/S1464793103006195
    [51]
    Storey KB, Storey JM. 2007. Tribute to P. L. Lutz: putting life on `pause'–molecular regulation of hypometabolism. Journal of Experimental Biology, 210(10): 1700−1714. doi: 10.1242/jeb.02716
    [52]
    Storey KB, Storey JM. 2010. Metabolic regulation and gene expression during aestivation. In: Navas CA, Carvalho JE. Aestivation. Berlin: Springer, 25–45.
    [53]
    Storey KB, Storey JM. 2012. Aestivation: signaling and hypometabolism. Journal of Experimental Biology, 215(9): 1425−1433. doi: 10.1242/jeb.054403
    [54]
    Storey KB, Storey JM. 2013. Molecular biology of freezing tolerance. Comprehensive Physiology, 3(3): 1283−1308.
    [55]
    Sun HJ, Zuo XB, Sun L, et al. 2018. Insights into the seasonal adaptive mechanisms of Chinese alligators (Alligator sinensis) from transcriptomic analyses. Australian Journal of Zoology, 66(2): 93−102. doi: 10.1071/ZO18005
    [56]
    Sun YB, Xiong ZJ, Xiang XY, et al. 2015. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proceedings of the National Academy of Sciences of the United States of America, 112(11): E1257−E1262.
    [57]
    Tattersall GJ, Ultsch GR. 2008. Physiological ecology of aquatic overwintering in ranid frogs. Biological Reviews, 83(2): 119−140. doi: 10.1111/j.1469-185X.2008.00035.x
    [58]
    Wu CW, Tessier SN, Storey KB. 2018. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress and Chaperones, 23(6): 1205–1217.
    [59]
    Zapata AG, Varas A, Torroba M. 1992. Seasonal variations in the immune system of lower vertebrates. Immunology Today, 13(4): 142−147. doi: 10.1016/0167-5699(92)90112-K
    [60]
    Zhang HY, Zhang XJ, Xu TS, et al. 2022a. Effects of acute heat exposure on oxidative stress and antioxidant defenses in overwintering frogs. Nanorana parkeri. Journal of Thermal Biology, 110: 103355. doi: 10.1016/j.jtherbio.2022.103355
    [61]
    Zhang JH, Cai RQ, Liang JJ, et al. 2021. Molecular mechanism of Chinese alligator (Alligator sinensis) adapting to hibernation. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution, 336(1): 32−49. doi: 10.1002/jez.b.23013
    [62]
    Zhang WY, Niu CJ, Chen BJ, et al. 2018. Digital gene expression profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology, 81: 43−56. doi: 10.1016/j.cryobiol.2018.02.012
    [63]
    Zhang Y, Wang Q, Liang JQ et al. 2022b. Serum proteomic analysis of differentially expressed proteins and pathways involved in the mechanism of endemic osteoarthritis. Molecular Omics, 18(8): 745−753. doi: 10.1039/D2MO00154C
  • ZR-2023-171--Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (324) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return