Volume 44 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Lian-Lian Sun, Ying-Fen Dai, Mei-Xiang You, Cheng-Hua Li. Choline dehydrogenase interacts with SQSTM1 to activate mitophagy and promote coelomocyte survival in Apostichopus japonicus following Vibrio splendidus infection. Zoological Research, 2023, 44(5): 905-918. doi: 10.24272/j.issn.2095-8137.2023.106
Citation: Lian-Lian Sun, Ying-Fen Dai, Mei-Xiang You, Cheng-Hua Li. Choline dehydrogenase interacts with SQSTM1 to activate mitophagy and promote coelomocyte survival in Apostichopus japonicus following Vibrio splendidus infection. Zoological Research, 2023, 44(5): 905-918. doi: 10.24272/j.issn.2095-8137.2023.106

Choline dehydrogenase interacts with SQSTM1 to activate mitophagy and promote coelomocyte survival in Apostichopus japonicus following Vibrio splendidus infection

doi: 10.24272/j.issn.2095-8137.2023.106
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
L.L.S. conducted the experiments, processed the data, and wrote the manuscript; Y.F.D. and C.H.L. participated in the experimental design and revised the manuscript. M.X.Y. and C.H.L. contributed new reagents and analytic tools. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the National Natural Science Foundation of China (32102825) and Natural Science Foundation of Zhejiang Province (LQ22C190003)
More Information
  • Corresponding author: E-mail: lichenghua@nbu.edu.cn
  • Received Date: 2023-05-21
  • Accepted Date: 2023-08-14
  • Published Online: 2023-08-14
  • Publish Date: 2023-09-18
  • Previous studies have shown that Vibrio splendidus infection causes mitochondrial damage in Apostichopus japonicus coelomocytes, leading to the production of excessive reactive oxygen species (ROS) and irreversible apoptotic cell death. Emerging evidence suggests that mitochondrial autophagy (mitophagy) is the most effective method for eliminating damaged mitochondria and ROS, with choline dehydrogenase (CHDH) identified as a novel mitophagy receptor that can recognize non-ubiquitin damage signals and microtubule-associated protein 1 light chain 3 (LC3) in vertebrates. However, the functional role of CHDH in invertebrates is largely unknown. In this study, we observed a significant increase in the mRNA and protein expression levels of A. japonicus CHDH (AjCHDH) in response to V. splendidus infection and lipopolysaccharide (LPS) challenge, consistent with changes in mitophagy under the same conditions. Notably, AjCHDH was localized to the mitochondria rather than the cytosol following V. splendidus infection. Moreover, AjCHDH knockdown using siRNA transfection significantly reduced mitophagy levels, as observed through transmission electron microscopy and confocal microscopy. Further investigation into the molecular mechanisms underlying CHDH-regulated mitophagy showed that AjCHDH lacked an LC3-interacting region (LIR) for direct binding to LC3 but possessed a FB1 structural domain that binds to SQSTM1. The interaction between AjCHDH and SQSTM1 was further confirmed by immunoprecipitation analysis. Furthermore, laser confocal microscopy indicated that SQSTM1 and LC3 were recruited by AjCHDH in coelomocytes and HEK293T cells. In contrast, AjCHDH interference hindered SQSTM1 and LC3 recruitment to the mitochondria, a critical step in damaged mitochondrial degradation. Thus, AjCHDH interference led to a significant increase in both mitochondrial and intracellular ROS, followed by increased apoptosis and decreased coelomocyte survival. Collectively, these findings indicate that AjCHDH-mediated mitophagy plays a crucial role in coelomocyte survival in A. japonicus following V. splendidus infection.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    L.L.S. conducted the experiments, processed the data, and wrote the manuscript; Y.F.D. and C.H.L. participated in the experimental design and revised the manuscript. M.X.Y. and C.H.L. contributed new reagents and analytic tools. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
    [2]
    Ashrafi G, Schwarz TL. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 20(1): 31−42.
    [3]
    Bao DK, Zhao J, Zhou XC, et al. 2019. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene, 38(25): 5007−5020. doi: 10.1038/s41388-019-0772-z
    [4]
    Barnham KJ, Masters CL, Bush AI. 2004. Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3(3): 205−214. doi: 10.1038/nrd1330
    [5]
    Bhatia-Kiššová I, Camougrand N. 2013. Mitophagy: a process that adapts to the cell physiology. The International Journal of Biochemistry & Cell Biology, 45(1): 30−33.
    [6]
    Chang X, Lochner A, Wang HH, et al. 2021. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics, 11(14): 6766−6785. doi: 10.7150/thno.60143
    [7]
    Chang X, Toan S, Li RB, et al. 2022. Therapeutic strategies in ischemic cardiomyopathy: focus on mitochondrial quality surveillance. eBioMedicine, 84: 104260. doi: 10.1016/j.ebiom.2022.104260
    [8]
    Choi ME. 2020. Autophagy in kidney disease. Annual Review of Physiology, 82: 297−322. doi: 10.1146/annurev-physiol-021119-034658
    [9]
    De Ridder JJM, Van Dam K. 1973. The efflux of betaine from rat-liver mitochondria, a possible regulating step in choline oxidation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 291(2): 557−563. doi: 10.1016/0005-2736(73)90507-5
    [10]
    Deng H, He CB, Zhou ZC, et al. 2008. Isolation and pathogenicity of pathogens from skin ulceration and viscera ejection syndrome of sea cucumber. Journal of Biotechnology, 136(S1): S551.
    [11]
    Ding WX, Ni HM, Li M, et al. 2010. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. Journal of Biological Chemistry, 285(36): 27879−27890. doi: 10.1074/jbc.M110.119537
    [12]
    Elmore SP, Qian T, Grissom SF, et al. 2001. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. The FASEB Journal, 15(12): 1−17.
    [13]
    Evans CS, Holzbaur EL. 2020. Degradation of engulfed mitochondria is rate-limiting in optineurin-mediated mitophagy in neurons. eLife, 9: e50260. doi: 10.7554/eLife.50260
    [14]
    Fivenson EM, Lautrup S, Sun N, et al. 2017. Mitophagy in neurodegeneration and aging. Neurochemistry International, 109: 202−209. doi: 10.1016/j.neuint.2017.02.007
    [15]
    Gal J, Ström AL, Kwinter DM, et al. 2009. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. Journal of Neurochemistry, 111(4): 1062−1073. doi: 10.1111/j.1471-4159.2009.06388.x
    [16]
    Geisler S, Holmström KM, Skujat D, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12(2): 119−131. doi: 10.1038/ncb2012
    [17]
    Gong GH, Song MS, Csordas G, et al. 2015. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 350(6265): aad2459. doi: 10.1126/science.aad2459
    [18]
    Howard S, Bottino C, Brooke S, et al. 2002. Neuroprotective effects of bcl-2 overexpression in hippocampal cultures: interactions with pathways of oxidative damage. Journal of Neurochemistry, 83(4): 914−923. doi: 10.1046/j.1471-4159.2002.01198.x
    [19]
    Huang HL, Ullah F, Zhou DX, et al. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10: 800. doi: 10.3389/fpls.2019.00800
    [20]
    Huang SB, Lin QS. 2003. Functional expression and processing of rat choline dehydrogenase precursor. Biochemical and Biophysical Research Communications, 309(2): 344−350. doi: 10.1016/j.bbrc.2003.08.010
    [21]
    Jin SM, Youle RJ. 2012. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(Pt 4): 795–799.
    [22]
    Lee JY, Nagano Y, Taylor JP, et al. 2010. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. Journal of Cell Biology, 189(4): 671−679. doi: 10.1083/jcb.201001039
    [23]
    Li AQ, Gao M, Jiang WT, et al. 2020. Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Frontiers in Cell and Developmental Biology, 8: 584800. doi: 10.3389/fcell.2020.584800
    [24]
    Li Y, Wang SG, Ni HM, et al. 2014. Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. BioMed Research International, 2014: 498491.
    [25]
    Li Y, Zheng WQ, Lu YY, et al. 2021. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death & Disease, 13(1): 14.
    [26]
    Lin CS, Wu RD. 1986. Choline oxidation and choline dehydrogenase. Journal of Protein Chemistry, 5(3): 193−200. doi: 10.1007/BF01025488
    [27]
    Liu HZ, Zheng FR, Sun XQ, et al. 2010. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). Journal of Invertebrate Pathology, 105(3): 236−242. doi: 10.1016/j.jip.2010.05.016
    [28]
    Liu L, Sakakibara K, Chen Q, et al. 2014. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Research, 24(7): 787−795. doi: 10.1038/cr.2014.75
    [29]
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [30]
    Luo J, Mills K, Le Cessie S, et al. 2020. Ageing, age-related diseases and oxidative stress: what to do next. Ageing Research Reviews, 57: 100982. doi: 10.1016/j.arr.2019.100982
    [31]
    Ma YX, Xu GR, Chang YQ, et al. 2006. Bacterial pathogens of skin ulceration disease in cultured sea cucumber Apostichopus japonicus (Selenka) juveniles. Journal of Dalian Fisheries University, 21(1): 13−18. (in Chinese)
    [32]
    Mammucari C, Rizzuto R. 2010. Signaling pathways in mitochondrial dysfunction and aging. Mechanisms of Ageing and Development, 131(7–8): 536–543.
    [33]
    McBride HM, Neuspiel M, Wasiak S. 2006. Mitochondria: more than just a powerhouse. Current Biology, 16(14): R551−R560. doi: 10.1016/j.cub.2006.06.054
    [34]
    Métivier D, Dallaporta B, Zamzami N, et al. 1998. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunology Letters, 61(2–3): 157–163.
    [35]
    Murphy E, Ardehali H, Balaban RS, et al. 2016. Mitochondrial function, biology, and role in disease. Circulation Research, 118(12): 1960−1991. doi: 10.1161/RES.0000000000000104
    [36]
    Narendra D, Kane LA, Hauser DN, et al. 2010. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6(8): 1090−1106. doi: 10.4161/auto.6.8.13426
    [37]
    Nguyen TN, Padman BS, Lazarou M. 2016. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends in Cell Biology, 26(10): 733−744. doi: 10.1016/j.tcb.2016.05.008
    [38]
    Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell, 148(6): 1145−1159. doi: 10.1016/j.cell.2012.02.035
    [39]
    Orrenius S, Gogvadze V, Zhivotovsky B. 2007. Mitochondrial oxidative stress: implications for cell death. Annual Review of Pharmacology and Toxicology, 47: 143−183. doi: 10.1146/annurev.pharmtox.47.120505.105122
    [40]
    Pal A, Paripati AK, Deolal P, et al. 2022. Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and cell death in Saccharomyces cerevisiae. Journal of Biological Chemistry, 298(11): 102533. doi: 10.1016/j.jbc.2022.102533
    [41]
    Pankiv S, Clausen TH, Lamark T, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry, 282(33): 24131−24145. doi: 10.1074/jbc.M702824200
    [42]
    Park S, Choi SG, Yoo SM, et al. 2014. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy, 10(11): 1906−1920. doi: 10.4161/auto.32177
    [43]
    Pavón N, Buelna-Chontal M, Macías-López A, et al. 2019. On the oxidative damage by cadmium to kidney mitochondrial functions. Biochemistry and Cell Biology, 97(2): 187−192. doi: 10.1139/bcb-2018-0196
    [44]
    Sun LL, Guo M, Lv ZM, et al. 2020. Hypoxia-inducible factor-1α shifts metabolism from oxidative phosphorylation to glycolysis in response to pathogen challenge in Apostichopus japonicus. Aquaculture, 526: 735393.
    [45]
    Sun LL, Shao YN, You MX, et al. 2022. ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection. Zoological Research, 43(2): 285−300. doi: 10.24272/j.issn.2095-8137.2021.460
    [46]
    Tolkovsky AM. 2009. Mitophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9): 1508−1515. doi: 10.1016/j.bbamcr.2009.03.002
    [47]
    Villa E, Marchetti S, Ricci JE. 2018. No parkin zone: mitophagy without parkin. Trends in Cell Biology, 28(11): 882−895. doi: 10.1016/j.tcb.2018.07.004
    [48]
    Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. 2018. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2): 119.
    [49]
    Wang J, Toan S, Zhou H. 2020. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis, 23(3): 299−314. doi: 10.1007/s10456-020-09720-2
    [50]
    Wang J, Zhou H. 2020. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharmaceutica Sinica B, 10(10): 1866−1879. doi: 10.1016/j.apsb.2020.03.004
    [51]
    Watanabe Y, Tanaka M. 2011. p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. Journal of Cell Science, 124(16): 2692−2701. doi: 10.1242/jcs.081232
    [52]
    Wei HF, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(10): 2784−2790. doi: 10.1016/j.bbamcr.2015.03.013
    [53]
    West AP, Brodsky IE, Rahner C, et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 472(7344): 476−480. doi: 10.1038/nature09973
    [54]
    Yamano K, Matsuda N, Tanaka K. 2016. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Reports, 17(3): 300−316. doi: 10.15252/embr.201541486
    [55]
    Yoo SM, Jung YK. 2018. A molecular approach to mitophagy and mitochondrial dynamics. Molecules and Cells, 41(1): 18−26.
    [56]
    Youle RJ, Van Der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science, 337(6098): 1062−1065. doi: 10.1126/science.1219855
    [57]
    Zeb A, Choubey V, Gupta R, et al. 2021. A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biology, 48: 102186. doi: 10.1016/j.redox.2021.102186
    [58]
    Zhang PJ, Li CH, Shao YN, et al. 2014. Identification and characterization of miR-92a and its targets modulating Vibrio splendidus challenged Apostichopus japonicus. Fish & Shellfish Immunology, 38(2): 383–388.
    [59]
    Zhang YP, Xi XT, Mei Y, et al. 2019. High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomedicine & Pharmacotherapy, 111: 1315−1325.
    [60]
    Zorov DB, Filburn CR, Klotz LO, et al. 2000. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. The Journal of Experimental Medicine, 192(7): 1001−1014. doi: 10.1084/jem.192.7.1001
  • ZR-2023-106-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (663) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return