Citation: | Nelson Tang, Yong-Tang Zheng, Hui Zhao, Wai-Yee Chan, Yong-Gang Yao. Jump further, leap higher, and consolidate stronger: A brief review of the long-term partnership between Kunming Institute of Zoology (KIZ) and the Chinese University of Hong Kong (CUHK) in bioresources and molecular research. Zoological Research, 2023, 44(3): 556-558. doi: 10.24272/j.issn.2095-8137.2023.091 |
[1] |
Beall CM, Cavalleri GL, Deng L, et al. 2010. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11459−11464. doi: 10.1073/pnas.1002443107
|
[2] |
Bi R, Li Y, Xu M, et al. 2022. Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. Innovation (Camb), 3(6): 100329.
|
[3] |
Cao RC, Lv Y, Lu G, et al. 2023. Extracellular vesicles from iPSC-MSCs alleviate chemotherapy-induced mouse ovarian damage via the ILK-PI3K/AKT pathway. Zoological Research, 44(3): 620−635. doi: 10.24272/j.issn.2095-8137.2022.340
|
[4] |
Hassan IUI, Rehman HM, Liu Z, et al. 2023. Genome-wide identification and spatiotemporal expression profiling of zinc finger SWIM domain-containing protein family genes. Zoological Research, 44(3): 663−674. doi: 10.24272/j.issn.2095-8137.2022.418
|
[5] |
Ho NJ, Chen X, Lei Y, et al. 2023. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zoological Research, 44(3): 650−662. doi: 10.24272/j.issn.2095-8137.2022.281
|
[6] |
Li KQ, Liu GJ, Liu XY, et al. 2023. EPAS1 prevents telomeric damage-induced senescence by enhancing transcription of TRF1, TRF2, and RAD50. Zoological Research, 44(3): 636−649. doi: 10.24272/j.issn.2095-8137.2022.531
|
[7] |
Ji LD, Qiu YQ, Xu J, et al. 2012. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among Eurasian human populations. Molecular Biology and Evolution, 29(11): 3359−3370. doi: 10.1093/molbev/mss144
|
[8] |
Rahman A, Li Y, Chan TK, et al. 2023. Large animal models of cardiac ischemia-reperfusion injury: Where are we now?. Zoological Research, 44(3): 591−603. doi: 10.24272/j.issn.2095-8137.2022.487
|
[9] |
Salmas P, Cheung VCK. 2023. Gradient descent decomposition of force-field motor primitives optogenetically elicited for motor mapping of the murine lumbosacral spinal cord. Zoological Research, 44(3): 604−619. doi: 10.24272/j.issn.2095-8137.2022.276
|
[10] |
Storz JF. 2010. Genes for high altitudes. Science, 329(5987): 40−41. doi: 10.1126/science.1192481
|
[11] |
Wang Z, Chan SW, Zhao H, et al. 2023. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson’s disease, with insights into Pink1 knockout models. Zoological Research, 44(3): 559−576. doi: 10.24272/j.issn.2095-8137.2022.406
|
[12] |
Yao YG; Construction Team of the KIZ Primate Facility. 2022. Towards the peak: The 10-year journey of the National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility) and a call for international collaboration in non-human primate research. Zoological Research, 43(2): 237−240. doi: 10.24272/j.issn.2095-8137.2022.032
|
[13] |
Zhu W, Lo CW. 2023. Insights into the genetic architecture of congenital heart disease from animal modeling. Zoological Research, 44(3): 577−590. doi: 10.24272/j.issn.2095-8137.2022.463
|