Volume 44 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Xin-Lai Wu, Dan-Ping Mu, Qi-Sen Yang, Yu Zhang, Yu-Chun Li, Anderson Feijó, Ji-Long Cheng, Zhi-Xin Wen, Liang Lu, Lin Xia, Zhi-Jun Zhou, Yan-Hua Qu, De-Yan Ge. Comparative genomics of widespread and narrow-range white-bellied rats in the Niviventer niviventer species complex sheds light on invasive rodent success. Zoological Research, 2023, 44(6): 1052-1063. doi: 10.24272/j.issn.2095-8137.2022.519
Citation: Xin-Lai Wu, Dan-Ping Mu, Qi-Sen Yang, Yu Zhang, Yu-Chun Li, Anderson Feijó, Ji-Long Cheng, Zhi-Xin Wen, Liang Lu, Lin Xia, Zhi-Jun Zhou, Yan-Hua Qu, De-Yan Ge. Comparative genomics of widespread and narrow-range white-bellied rats in the Niviventer niviventer species complex sheds light on invasive rodent success. Zoological Research, 2023, 44(6): 1052-1063. doi: 10.24272/j.issn.2095-8137.2022.519

Comparative genomics of widespread and narrow-range white-bellied rats in the Niviventer niviventer species complex sheds light on invasive rodent success

doi: 10.24272/j.issn.2095-8137.2022.519
Permission for field surveys was granted by the Science and Technology Department of Sichuan Province in the Second Tibetan Plateau Scientific Expedition and Research Program from 2019−2023.
The original genomic sequencing reads can be downloaded from the NCBI (PRJNA1026848), China National Center for Bioinformation (PRJCA020058), and Science Data Bank databases (DOI: 10.57760/sciencedb.j00139.00066).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
D.Y.G. and X.L.W. designed the research. D.Y.G., X.L.W., Z.X.W., A.F., J.L.C., L.X., Q.S.Y., Y.C.L., L.L., and D.P.M. participated in sample collection. X.L.W. and D.Y.G. performed data collection and analyses. X.L.W., D.Y.G., Z.J.Z., Y.Z., and Y.H.Q. wrote the paper. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the Guangdong Provincial Key R&D Program (2022B1111040001), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0402/2019QZKK0501), and National Natural Science Foundation of China (32170426)
More Information
  • Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima’s D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the “genomic islands of speciation”, we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.
  • Permission for field surveys was granted by the Science and Technology Department of Sichuan Province in the Second Tibetan Plateau Scientific Expedition and Research Program from 2019−2023.
    The original genomic sequencing reads can be downloaded from the NCBI (PRJNA1026848), China National Center for Bioinformation (PRJCA020058), and Science Data Bank databases (DOI: 10.57760/sciencedb.j00139.00066).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    D.Y.G. and X.L.W. designed the research. D.Y.G., X.L.W., Z.X.W., A.F., J.L.C., L.X., Q.S.Y., Y.C.L., L.L., and D.P.M. participated in sample collection. X.L.W. and D.Y.G. performed data collection and analyses. X.L.W., D.Y.G., Z.J.Z., Y.Z., and Y.H.Q. wrote the paper. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12: 246. doi: 10.1186/1471-2105-12-246
    [2]
    Allen E, Ding JQ, Wang W, et al. 2005. Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature, 438(7065): 224−228. doi: 10.1038/nature04256
    [3]
    Allen GM. 1926. Rats (Genus Rattus) from the Asiatic Expeditions. New York: The American Museum of Natural History.
    [4]
    Anney R, Klei L, Pinto D, et al. 2010. A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 19(20): 4072−4082. doi: 10.1093/hmg/ddq307
    [5]
    Arthur W. 1982. The evolutionary consequences of interspecific competition. Advances in Ecological Research, 12: 127−187.
    [6]
    Bartlett LJ, Williams DR, Prescott GW, et al. 2016. Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography, 39(2): 152−161. doi: 10.1111/ecog.01566
    [7]
    Chen SF, Zhou YQ, Chen YR, et al. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [8]
    Chen Y, Zhao L, Teng HJ, et al. 2021. Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus. Frontiers in Zoology, 18(1): 6.
    [9]
    Cingolani P, Platts A, Wang LL, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2): 80−92. doi: 10.4161/fly.19695
    [10]
    Dai XX, Jian C, Li N, et al. 2019. Characterization of the L genome segment of an orthohantavirus isolated from Niviventer confucianus. Archives of Virology, 164(2): 613–616.
    [11]
    Danecek P, Auton A, Abecasis G, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [12]
    Daru BH, Davies TJ, Willis CG, et al. 2021. Widespread homogenization of plant communities in the Anthropocene. Nature Communications, 12(1): 6983. doi: 10.1038/s41467-021-27186-8
    [13]
    Erkinaro E, Heikura K, Lindgren E, et al. 1982. Occurrence and spread of the wild boar (Sus scrofa) in eastern Fennoscandia. Memoranda Societatis pro Fauna et Flora Fennica, 58(2): 39−47.
    [14]
    Gao YT. 1983. Current studies on the Chinese Yarkand hare. Acta Zoologica Fennica, 174: 23−25.
    [15]
    Gaston KJ. 2009. Geographic range limits of species. Proceedings of the Royal Society B:Biological Sciences, 276(1661): 1391−1393. doi: 10.1098/rspb.2009.0100
    [16]
    Gause GF. 1934. Experimental analysis of Vito Volterra's mathematical theory of the struggle for existence. Science, 79(2036): 16−17. doi: 10.1126/science.79.2036.16.b
    [17]
    Ge DY, Feijó A, Abramov AV, et al. 2021a. Molecular phylogeny and morphological diversity of the Niviventer fulvescens species complex with emphasis on species from China. Zoological Journal of the Linnean Society, 191(2): 528−547. doi: 10.1093/zoolinnean/zlaa040
    [18]
    Ge DY, Feijó A, Wen ZX, et al. 2021b. Demographic history and genomic response to environmental changes in a rapid radiation of wild rats. Molecular Biology and Evolution, 38(5): 1905−1923. doi: 10.1093/molbev/msaa334
    [19]
    Ge DY, Lu L, Abramov AV, et al. 2019. Coalescence models reveal the rise of the white-bellied rat (Niviventer confucianus) following the loss of Asian Megafauna. Journal of Mammalian Evolution, 26(3): 423−434. doi: 10.1007/s10914-018-9428-y
    [20]
    Ge DY, Lu L, Xia L, et al. 2018. Molecular phylogeny, morphological diversity, and systematic revision of a species complex of common wild rat species in China (Rodentia, Murinae). Journal of Mammalogy, 99(6): 1350−1374. doi: 10.1093/jmammal/gyy117
    [21]
    Ge SX, Jung D, Yao RN. 2020. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8): 2628−2629. doi: 10.1093/bioinformatics/btz931
    [22]
    Ge XY, Yang WH, Pan H, et al. 2016. Erratum to: Fugong virus, a novel hantavirus harbored by the small oriental vole (Eothenomys eleusis) in China. Virology Journal, 13: 75. doi: 10.1186/s12985-016-0532-4
    [23]
    Gill JL. 2014. Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist, 201(4): 1163−1169. doi: 10.1111/nph.12576
    [24]
    Hardin G. 1960. The competitive exclusion principle. Science, 131(3409): 1292−1297. doi: 10.1126/science.131.3409.1292
    [25]
    Harpak A, Garud N, Rosenberg NA, et al. 2021. Genetic adaptation in New York City rats. Genome Biology and Evolution, 13(1): evaa247. doi: 10.1093/gbe/evaa247
    [26]
    Hawkins BA, Diniz-Filho JAF. 2006. Beyond Rapoport's rule: evaluating range size patterns of New World birds in a two-dimensional framework. Global Ecology and Biogeography, 15(5): 461−469. doi: 10.1111/j.1466-822X.2006.00243.x
    [27]
    He K, Jiang XL. 2015. Mitochondrial phylogeny reveals cryptic genetic diversity in the genus Niviventer (Rodentia, Muroidea). Mitochondrial DNA, 26(1): 48−55. doi: 10.3109/19401736.2013.823167
    [28]
    Hickling R, Roy DB, Hill JK, et al. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3): 450−455. doi: 10.1111/j.1365-2486.2006.01116.x
    [29]
    Hill JK, Thomas CD, Huntley B. 1999. Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proceedings of the Royal Society B:Biological Sciences, 266(1425): 1197−1206. doi: 10.1098/rspb.1999.0763
    [30]
    Howell BW, Hawkes R, Soriano P, et al. 1997. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature, 389(6652): 733–737.
    [31]
    Hu XQ, Li SG, Liu H, et al. 2014. Diversity and distribution of host animal species of hantavirus and risk to human health in Jiuhua Mountain Area, China. Biomedical and Environmental Sciences, 27(11): 849−857.
    [32]
    Ito H, Morishita R, Mizuno M, et al. 2018. Biochemical and morphological characterization of a neurodevelopmental disorder-related mono-ADP-Ribosylhydrolase, MACRO domain containing 2. Developmental Neuroscience, 40(3): 278−287. doi: 10.1159/000492271
    [33]
    Janoušek V, Munclinger P, Wang LY, et al. 2015. Functional organization of the genome may shape the species boundary in the house mouse. Molecular Biology and Evolution, 32(5): 1208−1220. doi: 10.1093/molbev/msv011
    [34]
    Karaseva EV, Tikhonova GN, Bogomolov PL. 1992. Distribution of the striped field-mouse (apodemus-agrarius) and peculiarities of its ecology in different parts of its range. Zoologichesky Zhurnal, 71(6): 106−115.
    [35]
    Krehenwinkel H, Rödder D, Tautz D. 2015. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Global Change Biology, 21(12): 4320−4332. doi: 10.1111/gcb.13042
    [36]
    Latif A, Liu BY, Chen Z, et al. 2017. Orientia tsutsugamushi infection in rodents in Anhui Province of China. Infection, Genetics and Evolution, 56: 14−18. doi: 10.1016/j.meegid.2017.10.014
    [37]
    Laube I, Korntheuer H, Schwager M, et al. 2013. Towards a more mechanistic understanding of traits and range sizes. Global Ecology and Biogeography, 22(2): 233−241. doi: 10.1111/j.1466-8238.2012.00798.x
    [38]
    Laughlin RE, Grant TL, Williams RW, et al. 2011. Genetic dissection of behavioral flexibility: reversal learning in mice. Biological Psychiatry, 69(11): 1109−1116. doi: 10.1016/j.biopsych.2011.01.014
    [39]
    Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10): 2798−2800. doi: 10.1093/molbev/msv150
    [40]
    Lester SE, Ruttenberg BI, Gaines SD, et al. 2007. The relationship between dispersal ability and geographic range size. Ecology Letters, 10(8): 745−758. doi: 10.1111/j.1461-0248.2007.01070.x
    [41]
    Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21): 2987−2993. doi: 10.1093/bioinformatics/btr509
    [42]
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [43]
    Li H, Handsaker B, Wysoker A, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [44]
    Li YY, Li YQ, Li HT, et al. 2020. Niviventer confucianus sacer (Rodentia, Muridae) is a distinct species based on molecular, karyotyping, and morphological evidence. ZooKeys, 959: 137−159. doi: 10.3897/zookeys.959.53426
    [45]
    Lin XD, Wang W, Guo WP, et al. 2012. Cross-species transmission in the speciation of the currently known Murinae-associated hantaviruses. Journal of Virology, 86(20): 11171−11182. doi: 10.1128/JVI.00021-12
    [46]
    Lionel AC, Crosbie J, Barbosa N, et al. 2011. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Science Translational Medicine, 3(95): 95ra75.
    [47]
    Liu DY, Liu J, Liu BY, et al. 2017. Phylogenetic analysis based on mitochondrial DNA sequences of wild rats, and the relationship with Seoul virus infection in Hubei, China. Virologica Sinica, 32(3): 235−244. doi: 10.1007/s12250-016-3940-0
    [48]
    Lu L, Ge DY, Chesters D, et al. 2015. Molecular phylogeny and the underestimated species diversity of the endemic white-bellied rat (Rodentia: Muridae: Niviventer) in Southeast Asia and China. Zoologica Scripta, 44(5): 475−494. doi: 10.1111/zsc.12117
    [49]
    Lu R, Wang HP, Liang Z, et al. 2004. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proceedings of the National Academy of Sciences of the United States of America, 101(42): 15201−15206.
    [50]
    Masuzawa T, Takada N, Kudeken M, et al. 2001. Borrelia sinica sp. nov. , a Lyme disease-related Borrelia species isolated in China. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 5): 1817–1824.
    [51]
    McKinney ML, Lockwood JL. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14(11): 450−453.
    [52]
    Moore A, Linden J, Jentsch JD. 2021. Syn3 gene knockout negatively impacts aspects of reversal learning performance. eNeuro, 8(5): ENEURO.0251−21.2021.
    [53]
    Muscarella R, Galante PJ, Soley-Guardia M, et al. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecology and Evolution, 5(11): 1198−1205. doi: 10.1111/2041-210X.12261
    [54]
    Nguyen LT, Schmidt HA, Von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating Maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [55]
    Pagnamenta AT, Bacchelli E, De Jonge MV, et al. 2010. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 Suggests novel risk loci for autism and dyslexia. Biological Psychiatry, 68(4): 320−328. doi: 10.1016/j.biopsych.2010.02.002
    [56]
    Pither J. 2003. Climate tolerance and interspecific variation in geographic range size. Proceedings of the Royal Society B:Biological Sciences, 270(1514): 475−481. doi: 10.1098/rspb.2002.2275
    [57]
    Puckett EE, Park J, Combs M, et al. 2016. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proceedings of the Royal Society B:Biological Sciences, 283(1841): 20161762. doi: 10.1098/rspb.2016.1762
    [58]
    Purcell S, Neale B, Todd-Brown K, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [59]
    Rabiee MH, Mahmoudi A, Siahsarvie R, et al. 2018. Rodent-borne diseases and their public health importance in Iran. PLoS Neglected Tropical Diseases, 12(4): e0006256. doi: 10.1371/journal.pntd.0006256
    [60]
    Raharinosy V, Olive MM, Andriamiarimanana FM, et al. 2018. Geographical distribution and relative risk of Anjozorobe virus (Thailand orthohantavirus) infection in black rats (Rattus rattus) in Madagascar. Virology Journal, 15(1): 83. doi: 10.1186/s12985-018-0992-9
    [61]
    Saito-Ito A, Takada N, Ishiguro F, et al. 2008. Detection of Kobe-type Babesia microti associated with Japanese human babesiosis in field rodents in central Taiwan and southeastern mainland China. Parasitology, 135(6): 691−699. doi: 10.1017/S0031182008004356
    [62]
    Sandel B, Arge L, Dalsgaard B, et al. 2011. The influence of late quaternary climate-change velocity on species endemism. Science, 334(6056): 660−664. doi: 10.1126/science.1210173
    [63]
    Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6): 863−864. doi: 10.1093/bioinformatics/btr026
    [64]
    Sheldon M, Rice DS, D’Arcangelo G, et al. 1997. Scrambler and yotari disrupt the disabled gene and produce a reeler -like phenotype in mice. Nature, 389(6652): 730−733. doi: 10.1038/39601
    [65]
    Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters, 16(8): 1104−1114. doi: 10.1111/ele.12140
    [66]
    Staubach F, Lorenc A, Messer PW, et al. 2012. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLoS Genetics, 8(8): e1002891. doi: 10.1371/journal.pgen.1002891
    [67]
    Stefansson H, Steinberg S, Petursson H, et al. 2009. Variant in the sequence of the LINGO1 gene confers risk of essential tremor. Nature Genetics, 41(3): 277−279. doi: 10.1038/ng.299
    [68]
    Suzuki TA, Phifer-Rixey M, Mack KL, et al. 2019. Host genetic determinants of the gut microbiota of wild mice. Molecular Ecology, 28(13): 3197−3207. doi: 10.1111/mec.15139
    [69]
    Teng HJ, Zhang YH, Shi CM, et al. 2017. Population genomics reveals speciation and introgression between brown Norway rats and their sibling species. Molecular Biology and Evolution, 34(9): 2214−2228. doi: 10.1093/molbev/msx157
    [70]
    Thomas CD, Bodsworth EJ, Wilson RJ, et al. 2001. Ecological and evolutionary processes at expanding range margins. Nature, 411(6837): 577−581. doi: 10.1038/35079066
    [71]
    Thomas O. 1908. The duke of Bedford's zoological exploration in Eastern Asia.- X. List of mammals from the provinces of Chih-li and Shan-si, N. China. Proceedings of the Zoological Society of London, 78(3): 635−646. doi: 10.1111/j.1469-7998.1908.tb07397.x
    [72]
    Wang H, Yoshimatsu K, Ebihara H, et al. 2000. Genetic diversity of hantaviruses isolated in China and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology, 278(2): 332–345.
    [73]
    Wang YX. 2003. A Complete Checklist of Mammal Species and Subspecies in China: A Taxonomic and Geographic Reference. Beijing: China Forestry Publishing House, 41–46. (in Chinese)
    [74]
    Xu B, Woodroffe A, Rodriguez-Murillo L, et al. 2009. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans. Proceedings of the National Academy of Sciences of the United States of America, 106(39): 16746−16751.
    [75]
    Young HS, Dirzo R, Helgen KM, et al. 2014. Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proceedings of the National Academy of Sciences of the United States of America, 111(19): 7036−7041.
    [76]
    Zeng L, Ming C, Li Y, et al. 2018. Out of Southern East Asia of the brown rat revealed by large-scale genome sequencing. Molecular Biology and Evolution, 35(1): 149−158. doi: 10.1093/molbev/msx276
    [77]
    Zhang B, He K, Wan T, et al. 2016. Multi-locus phylogeny using topotype specimens sheds light on the systematics of Niviventer (Rodentia, Muridae) in China. BMC Evolutionary Biology, 16(1): 261. doi: 10.1186/s12862-016-0832-8
    [78]
    Zhang C, Dong SS, Xu JY, et al. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 35(10): 1786−1788. doi: 10.1093/bioinformatics/bty875
    [79]
    Zou Y, Zhang WF, Liu HY, et al. 2017. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases. Neural Regeneration Research, 12(9): 1551−1558. doi: 10.4103/1673-5374.215268
  • ZR-2022-519-Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (526) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return