Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Attaur Rahman, Yuhao Li, To-Kiu Chan, Hui Zhao, Yaozu Xiang, Xing Chang, Hao Zhou, Dachun Xu, Sang-Bing Ong. Large animal models of cardiac ischemia-reperfusion injury: Where are we now?. Zoological Research, 2023, 44(3): 591-603. doi: 10.24272/j.issn.2095-8137.2022.487
Citation: Attaur Rahman, Yuhao Li, To-Kiu Chan, Hui Zhao, Yaozu Xiang, Xing Chang, Hao Zhou, Dachun Xu, Sang-Bing Ong. Large animal models of cardiac ischemia-reperfusion injury: Where are we now?. Zoological Research, 2023, 44(3): 591-603. doi: 10.24272/j.issn.2095-8137.2022.487

Large animal models of cardiac ischemia-reperfusion injury: Where are we now?

doi: 10.24272/j.issn.2095-8137.2022.487
The authors declare that they have no competing interests.
A.R., Y.L., and T.K.C. wrote the manuscript. H.Z., Y.X., X.C., and H.Z. contributed perspectives and conducted proofreading. D.X. and S.B.O. conceived the idea for the manuscript, guided the writing, and performed final editing of the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the Early Career Scheme (ECS) 2022/23 (CUHK 24110822) from the Research Grants Council of Hong Kong, as well as the Direct Grant for Research 2020/21 (2020.035), Project Impact Enhancement Fund (PIEF) (PIEF/Ph2/COVID/08), and Improvement on Competitiveness in Hiring New Faculties Funding Scheme from CUHK as well as the Centre for Cardiovascular Genomics and Medicine (CCGM) of the Lui Che Woo Institute of Innovative Medicine CUHK (to S.B.O.). A.R. is a CUHK Department of Medicine & Therapeutics (MEDT)-funded PhD student. Y.L. is a CUHK Vice-Chancellor’s PhD Scholarship holder
More Information
  • Large animal models of cardiac ischemia-reperfusion are critical for evaluation of the efficacy of cardioprotective interventions prior to clinical translation. Nonetheless, current cardioprotective strategies/interventions formulated in preclinical cardiovascular research are often limited to small animal models, which are not transferable or reproducible in large animal models due to different factors such as: (i) complex and varied features of human ischemic cardiac disease (ICD), which are challenging to mimic in animal models, (ii) significant differences in surgical techniques applied, and (iii) differences in cardiovascular anatomy and physiology between small versus large animals. This article highlights the advantages and disadvantages of different large animal models of preclinical cardiac ischemic reperfusion injury (IRI), as well as the different methods used to induce and assess IRI, and the obstacles faced in using large animals for translational research in the settings of cardiac IR.
  • The authors declare that they have no competing interests.
    A.R., Y.L., and T.K.C. wrote the manuscript. H.Z., Y.X., X.C., and H.Z. contributed perspectives and conducted proofreading. D.X. and S.B.O. conceived the idea for the manuscript, guided the writing, and performed final editing of the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Abdel-Aty H, Cocker M, Meek C, et al. 2009. Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. Journal of the American College of Cardiology, 53(14): 1194−1201. doi: 10.1016/j.jacc.2008.10.065
    [2]
    Acharya D. 2020. Unloading and reperfusion in myocardial infarction: a matter of time. Circulation:Heart Failure, 13(1): e006718. doi: 10.1161/CIRCHEARTFAILURE.119.006718
    [3]
    Aletras AH, Tilak GS, Natanzon A, et al. 2006. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging. Circulation, 113(15): 1865−1870. doi: 10.1161/CIRCULATIONAHA.105.576025
    [4]
    Anand IS, Sharma PL, Chakravarti RN, et al. 1980. Experimental myocardial infarction in rhesus monkeys. Verapamil pretreatment in the reduction of infarct size. Advances in Myocardiology, 2: 425−433.
    [5]
    Atkins BZ, Hueman MT, Meuchel JM, et al. 1999. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. The Journal of Heart and Lung Transplantation, 18(12): 1173−1180. doi: 10.1016/S1053-2498(99)00096-0
    [6]
    Badimon L, Mendieta G, Ben-Aicha S, et al. 2019. Post-genomic methodologies and preclinical animal models: chances for the translation of cardioprotection to the clinic. International Journal of Molecular Sciences, 20(3): 514. doi: 10.3390/ijms20030514
    [7]
    Batkai S, Genschel C, Viereck J, et al. 2021. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. European Heart Journal, 42(2): 192−201. doi: 10.1093/eurheartj/ehaa791
    [8]
    Bikou O, Watanabe S, Hajjar RJ, et al. 2018. A pig model of myocardial infarction: catheter-based approaches. In: Ishikawa K. Experimental Models of Cardiovascular Diseases. New York: Springer, 281–294.
    [9]
    Bloor CM, White FC, Sanders TM. 1984. Effects of exercise on collateral development in myocardial ischemia in pigs. Journal of Applied Physiology, 56(3): 656−665. doi: 10.1152/jappl.1984.56.3.656
    [10]
    Bolli R, Becker L, Gross G, et al. 2004. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circulation Research, 95(2): 125−134. doi: 10.1161/01.RES.0000137171.97172.d7
    [11]
    Carlsson M, Saloner D, Martin AJ, et al. 2010. Heterogeneous microinfarcts caused by coronary microemboli: evaluation with multidetector CT and MR imaging in a swine model. Radiology, 254(3): 718−728. doi: 10.1148/radiol.09090527
    [12]
    Chandrakala AN, Kwiatkowski P, Sai-Sudhakar CB, et al. 2013. Induction of early biomarkers in a thrombus-induced sheep model of ischemic heart failure. Texas Heart Institute Journal, 40(5): 511−520.
    [13]
    Charles CJ, Elliott JM, Nicholls MG, et al. 2000. Myocardial infarction with and without reperfusion in sheep: early cardiac and neurohumoral changes. Clinical Science, 98(6): 703−711. doi: 10.1042/CS19990266
    [14]
    Charles CJ, Rademaker MT, Scott NJA, et al. 2020. Large animal models of heart failure: reduced vs. preserved ejection fraction. Animals, 10(10): 1906. doi: 10.3390/ani10101906
    [15]
    Ciulla MM, Paliotti R, Ferrero S, et al. 2004. Left ventricular remodeling after experimental myocardial cryoinjury in rats. Journal of Surgical Research, 116(1): 91−97. doi: 10.1016/j.jss.2003.08.238
    [16]
    Costa AR, Panda NC, Yong S, et al. 2012. Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. American Journal of Physiology-Heart and Circulatory Physiology, 302(1): H270−H277. doi: 10.1152/ajpheart.00019.2011
    [17]
    Cremer S, Schloss MJ, Vinegoni C, et al. 2019. A mouse model of recurrent myocardial infarction reports diminished emergency hematopoiesis and cardiac inflammation. BioRxiv: 659359.
    [18]
    Crisostomo V, Baez C, Abad JL, et al. 2019. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Research & Therapy, 10(1): 152.
    [19]
    Davidson SM, Ferdinandy P, Andreadou I, et al. 2019. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. Journal of the American College of Cardiology, 73(1): 89−99. doi: 10.1016/j.jacc.2018.09.086
    [20]
    De Jong R, Van Hout GPJ, Houtgraaf JH, et al. 2014. Intracoronary infusion of encapsulated glucagon-like peptide-1–eluting mesenchymal stem cells preserves left ventricular function in a porcine model of acute myocardial infarction. Circulation:Cardiovascular Interventions, 7(5): 673−683. doi: 10.1161/CIRCINTERVENTIONS.114.001580
    [21]
    De Villiers C, Riley PR. 2020. Mouse models of myocardial infarction: comparing permanent ligation and ischaemia-reperfusion. Disease Models & Mechanisms, 13(11): dmm046565.
    [22]
    Derumeaux G, Ovize M, Loufoua J, et al. 1998. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation, 97(19): 1970−1977. doi: 10.1161/01.CIR.97.19.1970
    [23]
    Dirksen MT, Laarman GJ, Simoons ML, et al. 2007. Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research, 74(3): 343−355. doi: 10.1016/j.cardiores.2007.01.014
    [24]
    Dixon JA, Spinale FG. 2009. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circulation:Heart Failure, 2(3): 262−271. doi: 10.1161/CIRCHEARTFAILURE.108.814459
    [25]
    Dörge H, Schulz R, Belosjorow S, et al. 2002. Coronary microembolization: the role of TNF-α in contractile dysfunction. Journal of Molecular and Cellular Cardiology, 34(1): 51−62. doi: 10.1006/jmcc.2001.1489
    [26]
    Duan AQ, Lock MC, Perumal SR, et al. 2017. Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging. Journal of Cardiovascular Magnetic Resonance, 19(1): 69. doi: 10.1186/s12968-017-0383-1
    [27]
    Errington TM, Denis A, Allison AB, et al. 2021. Experiments from unfinished registered reports in the reproducibility project: cancer biology. eLife, 10: e73430. doi: 10.7554/eLife.73430
    [28]
    Fallavollita JA, Logue M, Canty Jr JM. 2001. Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. Journal of the American College of Cardiology, 37(7): 1989−1995. doi: 10.1016/S0735-1097(01)01250-5
    [29]
    Fallavollita JA, Riegel BJ, Suzuki G, et al. 2005. Mechanism of sudden cardiac death in pigs with viable chronically dysfunctional myocardium and ischemic cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 289(6): H2688−H2696. doi: 10.1152/ajpheart.00653.2005
    [30]
    Fattah C, Nather K, McCarroll CS, et al. 2016. Gene therapy with angiotensin-(1–9) preserves left ventricular systolic function after myocardial infarction. Journal of the American College of Cardiology, 68(24): 2652−2666. doi: 10.1016/j.jacc.2016.09.946
    [31]
    Fieno DS, Kim RJ, Chen EL, et al. 2000. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. Journal of the American College of Cardiology, 36(6): 1985−1991. doi: 10.1016/S0735-1097(00)00958-X
    [32]
    Gao EH, Lei YH, Shang XY, et al. 2010. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107(12): 1445−1453. doi: 10.1161/CIRCRESAHA.110.223925
    [33]
    Gao LR, Pei XT, Ding QA, et al. 2013. A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. International Journal of Cardiology, 168(4): 3191−3199. doi: 10.1016/j.ijcard.2013.04.112
    [34]
    Garcia-Dorado D, Oliveras J, Gili J, et al. 1993. Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovascular Research, 27(8): 1462−1469. doi: 10.1093/cvr/27.8.1462
    [35]
    Getz GS, Reardon CA. 2012. Animal models of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(5): 1104−1115. doi: 10.1161/ATVBAHA.111.237693
    [36]
    Ghugre NR, Pop M, Barry J, et al. 2013. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magnetic Resonance in Medicine, 70(4): 1095−1105. doi: 10.1002/mrm.24531
    [37]
    Graham G. 2016. Racial and ethnic differences in acute coronary syndrome and myocardial infarction within the United States: from demographics to outcomes. Clinical Cardiology, 39(5): 299−306. doi: 10.1002/clc.22524
    [38]
    Grisel P, Meinhardt A, Lehr HA, et al. 2008. The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovascular Pathology, 17(1): 14−22. doi: 10.1016/j.carpath.2007.01.007
    [39]
    Gross GJ. 2002. Models of cardiac ischemia-reperfusion injury in dogs and rats. Current Protocols in Pharmacology, 16(1): 5.27.21−5.27.17.
    [40]
    Haller C, Sobolewska B, Schibilsky D, et al. 2015. One-staged aptamer-based isolation and application of endothelial progenitor cells in a porcine myocardial infarction model. Nucleic Acid Therapeutics, 25(1): 20−26. doi: 10.1089/nat.2014.0499
    [41]
    Hashmi S, Al-Salam S. 2015. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison. International Journal of Clinical and Experimental Pathology, 8(8): 8786−8796.
    [42]
    Hausenloy DJ, Yellon DM. 2013. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. The Journal of Clinical Investigation, 123(1): 92−100. doi: 10.1172/JCI62874
    [43]
    Heusch G, Gersh BJ. 2017. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Heart Journal, 38(11): 774−784.
    [44]
    Heusch G, Skyschally A, Schulz R. 2011. The in-situ pig heart with regional ischemia/reperfusion — Ready for translation. Journal of Molecular and Cellular Cardiology, 50(6): 951−963. doi: 10.1016/j.yjmcc.2011.02.016
    [45]
    Hill JL, Gettes LS. 1980. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation, 61(4): 768−778. doi: 10.1161/01.CIR.61.4.768
    [46]
    Hirano A, Fujita J, Kanazawa H, et al. 2017. Cryoinjury-induced acute myocardial infarction model and ameroid constrictor-induced ischemic heart disease model in adult micro-mini pigs for preclinical studies. Translational Medicine Communications, 2(1): 1. doi: 10.1186/s41231-017-0011-y
    [47]
    Holley CT, Long EK, Butterick TA, et al. 2015. Mitochondrial fusion proteins in revascularized hibernating hearts. Journal of Surgical Research, 195(1): 29−36. doi: 10.1016/j.jss.2014.12.052
    [48]
    Ibáñez B, Heusch G, Ovize M, et al. 2015. Evolving therapies for myocardial ischemia/reperfusion injury. Journal of the American College of Cardiology, 65(14): 1454−1471. doi: 10.1016/j.jacc.2015.02.032
    [49]
    Jensen JA, Kosek JC, Hunt TK, et al. 1987. Cardiac cryolesions as an experimental model of myocardial wound healing. Annals of Surgery, 206(6): 798−803. doi: 10.1097/00000658-198712000-00019
    [50]
    Kalogeris T, Baines CP, Krenz M, et al. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298: 229−317.
    [51]
    Kaul S. 2006. Evaluating the ‘no reflow’ phenomenon with myocardial contrast echocardiography. Basic Research in Cardiology, 101(5): 391−399. doi: 10.1007/s00395-006-0618-z
    [52]
    Keeran KJ, Jeffries KR, Zetts AD, et al. 2017. A chronic cardiac ischemia model in swine using an ameroid constrictor. Journal of Visualized Experiments, (128): 56190.
    [53]
    Kim MC, Kim YS, Kang WS, et al. 2017. Intramyocardial injection of stem cells in pig myocardial infarction model: the first trial in Korea. Journal of Korean Medical Science, 32(10): 1708−1712. doi: 10.3346/jkms.2017.32.10.1708
    [54]
    Kleinbongard P, Heusch G. 2022. A fresh look at coronary microembolization. Nature Reviews Cardiology, 19(4): 265−280. doi: 10.1038/s41569-021-00632-2
    [55]
    Kloner RA. 2013. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circulation Research, 113(4): 451−463. doi: 10.1161/CIRCRESAHA.112.300627
    [56]
    Koudstaal S, Jansen of Lorkeers SJ, Gho JMIH, et al. 2014. Myocardial infarction and functional outcome assessment in pigs. Journal of Visualized Experiments, (86): e51269.
    [57]
    Lam NT, Sadek HA. 2018. Neonatal heart regeneration: comprehensive literature review. Circulation, 138(4): 412−423. doi: 10.1161/CIRCULATIONAHA.118.033648
    [58]
    Lee YT, Lin HY, Chan YWF, et al. 2017. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids in Health and Disease, 16(1): 12. doi: 10.1186/s12944-016-0402-5
    [59]
    Lelovas PP, Kostomitsopoulos NG, Xanthos TT. 2014. A comparative anatomic and physiologic overview of the porcine heart. Journal of the American Association for Laboratory Animal Science, 53(5): 432−438.
    [60]
    Liedtke AJ, Renstrom B, Nellis SH, et al. 1994. Myocardial function and metabolism in pig hearts after relief from chronic partial coronary stenosis. American Journal of Physiology-Heart and Circulatory Physiology, 267(4): H1312−H1319. doi: 10.1152/ajpheart.1994.267.4.H1312
    [61]
    Lim M, Wang WQ, Liang L, et al. 2018. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Research & Therapy, 9(1): 129.
    [62]
    Lindsey ML, Bolli R, Canty Jr JM, et al. 2018a. Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology-Heart and Circulatory Physiology, 314(4): H812−H838. doi: 10.1152/ajpheart.00335.2017
    [63]
    Lindsey ML, Kassiri Z, Virag JAI, et al. 2018b. Guidelines for measuring cardiac physiology in mice. American Journal of Physiology-Heart and Circulatory Physiology, 314(4): H733−H752. doi: 10.1152/ajpheart.00339.2017
    [64]
    Locatelli P, Olea FD, Mendiz O, et al. 2011. An ovine model of postinfarction dilated cardiomyopathy in animals with highly variable coronary anatomy. ILAR Journal, 52(1): E16−E21. doi: 10.1093/ilar.52.1.E16
    [65]
    Lopez JJ, Laham RJ, Stamler A, et al. 1998. VEGF administration in chronic myocardial ischemia in pigs. Cardiovascular Research, 40(2): 272−281. doi: 10.1016/S0008-6363(98)00136-9
    [66]
    Malik N, Farrell KA, Withers SB, et al. 2013. A novel porcine model of early left ventricular dysfunction for translational research. Research Reports in Clinical Cardiology, 4: 1−7.
    [67]
    Martin TP, MacDonald EA, Elbassioni AAM, et al. 2022. Preclinical models of myocardial infarction: from mechanism to translation. British Journal of Pharmacology, 179(5): 770−791. doi: 10.1111/bph.15595
    [68]
    McCall FC, Telukuntla KS, Karantalis V, et al. 2012. Myocardial infarction and intramyocardial injection models in swine. Nature Protocols, 7(8): 1479−1496. doi: 10.1038/nprot.2012.075
    [69]
    Mcfalls EO, Araujo LI, Lammertsma A, et al. 1993. Vasodilator reserve in collateral-dependent myocardium as measured by positron emission tomography. European Heart Journal, 14(3): 336−343. doi: 10.1093/eurheartj/14.3.336
    [70]
    Milani-Nejad N, Janssen PML. 2014. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacology & Therapeutics, 141(3): 235−249.
    [71]
    Miura T, Miki T. 2008. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Research in Cardiology, 103(6): 501−513. doi: 10.1007/s00395-008-0743-y
    [72]
    Mor-Avi V, Caiani EG, Collins KA, et al. 2001. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation, 104(3): 352−357. doi: 10.1161/01.CIR.104.3.352
    [73]
    Morrissey PJ, Murphy KR, Daley JM, et al. 2017. A novel method of standardized myocardial infarction in aged rabbits. American Journal of Physiology-Heart and Circulatory Physiology, 312(5): H959−H967. doi: 10.1152/ajpheart.00582.2016
    [74]
    Mu D, Zhang XL, Xie J, et al. 2016. Intracoronary transplantation of mesenchymal stem cells with overexpressed integrin-linked kinase improves cardiac function in porcine myocardial infarction. Scientific Reports, 6(1): 19155. doi: 10.1038/srep19155
    [75]
    Munz MR, Faria MA, Monteiro JR, et al. 2011. Surgical porcine myocardial infarction model through permanent coronary occlusion. Comparative Medicine, 61(5): 445−452.
    [76]
    Musiolik J, Van Caster P, Skyschally A, et al. 2010. Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovascular Research, 85(1): 110−117. doi: 10.1093/cvr/cvp271
    [77]
    Nguyen PK, Wu JC. 2015. Large animal models of ischemic cardiomyopathy: are they enough to bridge the translational gap?. Journal of Nuclear Cardiology, 22(4): 666−672. doi: 10.1007/s12350-015-0078-7
    [78]
    Nielsen EW, Miller Y, Brekke OL, et al. 2022. A novel porcine model of ischemia-reperfusion injury after cross-clamping the thoracic aorta revealed substantial cardiopulmonary, thromboinflammatory and biochemical changes without effect of C1-inhibitor treatment. Frontiers in Immunology, 13: 852119. doi: 10.3389/fimmu.2022.852119
    [79]
    Noll NA, Lal H, Merryman WD. 2020. Mouse models of heart failure with preserved or reduced ejection fraction. The American Journal of Pathology, 190(8): 1596−1608. doi: 10.1016/j.ajpath.2020.04.006
    [80]
    O'Quinn MP, Palatinus JA, Harris BS, et al. 2011. A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circulation Research, 108(6): 704−715. doi: 10.1161/CIRCRESAHA.110.235747
    [81]
    Pilz PM, Ward JE, Chang WT, et al. 2022. Large and small animal models of heart failure with reduced ejection fraction. Circulation Research, 130(12): 1888−1905. doi: 10.1161/CIRCRESAHA.122.320246
    [82]
    Pound P, Ritskes-Hoitinga M. 2018. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. Journal of Translational Medicine, 16(1): 304. doi: 10.1186/s12967-018-1678-1
    [83]
    Prabhu SD, Frangogiannis NG. 2016. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circulation Research, 119(1): 91−112. doi: 10.1161/CIRCRESAHA.116.303577
    [84]
    Quintana HK, Janszky I, Kanar A, et al. 2018. Comorbidities in relation to fatality of first myocardial infarction. Cardiovascular Pathology, 32: 32−37. doi: 10.1016/j.carpath.2017.11.002
    [85]
    Reshef E, Sabbah HN, Nussinovitch U. 2020. Effects of protective controlled coronary reperfusion on left ventricular remodeling in dogs with acute myocardial infarction: a pilot study. Cardiovascular Revascularization Medicine, 21(12): 1579−1584. doi: 10.1016/j.carrev.2020.05.001
    [86]
    Ribitsch I, Baptista PM, Lange-Consiglio A, et al. 2020. Large animal models in regenerative medicine and tissue engineering: To do or not to do. Frontiers in Bioengineering and Biotechnology, 8: 972. doi: 10.3389/fbioe.2020.00972
    [87]
    Riehle C, Bauersachs J. 2019. Small animal models of heart failure. Cardiovascular Research, 115(13): 1838−1849. doi: 10.1093/cvr/cvz161
    [88]
    Rissanen TT, Nurro J, Halonen PJ, et al. 2013. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. American Journal of Physiology-Heart and Circulatory Physiology, 305(9): H1297−H1308. doi: 10.1152/ajpheart.00561.2013
    [89]
    Robey TE, Murry CE. 2008. Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovascular Pathology, 17(1): 6−13. doi: 10.1016/j.carpath.2007.01.005
    [90]
    Roell W, Fan Y, Xia Y, et al. 2002. Cellular cardiomyoplasty in a transgenic mouse model. Transplantation, 73(3): 462−465. doi: 10.1097/00007890-200202150-00022
    [91]
    Roth DM, White FC, Mathieu-Costello O, et al. 1987. Effects of left circumflex Ameroid constrictor placement on adrenergic innervation of myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 253(6): H1425−H1434. doi: 10.1152/ajpheart.1987.253.6.H1425
    [92]
    Saeed M, Bajwa HZ, Do L, et al. 2016. Multi-detector CT and MRI of microembolized myocardial infarct: monitoring of left ventricular function, perfusion, and myocardial viability in a swine model. Acta Radiologica, 57(2): 215−224. doi: 10.1177/0284185115574737
    [93]
    Saeed M, Hetts SW, Do L, et al. 2013. MRI quantification of left ventricular function in microinfarct versus large infarct in swine model. The International Journal of Cardiovascular Imaging, 29(1): 159−168. doi: 10.1007/s10554-012-0076-7
    [94]
    Sala-Mercado JA, Wider J, Undyala VVR, et al. 2010. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation, 122(11 Suppl 1): S179–S184.
    [95]
    Sasayama S. 1994. Effect of coronary collateral circulation on myocardial ischemia and ventricular dysfunction. Cardiovascular Drugs and Therapy, 8(2): 327−334.
    [96]
    Savarese G, Lund LH. 2017. Global public health burden of heart failure. Cardiac Failure Review, 3(1): 7−11. doi: 10.15420/cfr.2016:25:2
    [97]
    Schulz R, Belosjorow S, Gres P, et al. 2002. p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovascular Research, 55(3): 690−700. doi: 10.1016/S0008-6363(02)00319-X
    [98]
    Schulz R, Gres P, Skyschally A, et al. 2003. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. The FASEB Journal, 17(10): 1355−1357. doi: 10.1096/fj.02-0975fje
    [99]
    Schulz R, Janssen F, Guth BD, et al. 1991. Effect of coronary hyperperfusion on regional myocardial function and oxygen consumption of stunned myocardium in pigs. Basic Research in Cardiology, 86(6): 534−543. doi: 10.1007/BF02190703
    [100]
    Schulz R, Post H, Neumann T, et al. 2001. Progressive loss of perfusion-contraction matching during sustained moderate ischemia in pigs. American Journal of Physiology-Heart and Circulatory Physiology, 280(5): H1945−H1953. doi: 10.1152/ajpheart.2001.280.5.H1945
    [101]
    Schulz R, Post H, Sakka S, et al. 1995. Intraischemic preconditioning: increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion. Circulation Research, 76(6): 942−950. doi: 10.1161/01.RES.76.6.942
    [102]
    Schulz R, Rose J, Martin C, et al. 1993. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation, 88(2): 684−695. doi: 10.1161/01.CIR.88.2.684
    [103]
    Shen YT, Fallon JT, Iwase M, et al. 1996. Innate protection of baboon myocardium: effects of coronary artery occlusion and reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 270(5): H1812−H1818. doi: 10.1152/ajpheart.1996.270.5.H1812
    [104]
    Shin HS, Shin HH, Shudo Y. 2021. Current status and limitations of myocardial infarction large animal models in cardiovascular translational research. Frontiers in Bioengineering and Biotechnology, 9: 673683. doi: 10.3389/fbioe.2021.673683
    [105]
    Sicklinger F, Zhang YH, Lavine KJ, et al. 2020. A minimal-invasive approach for standardized induction of myocardial infarction in mice. Circulation Research, 127(9): 1214−1216. doi: 10.1161/CIRCRESAHA.120.317794
    [106]
    Silva KAS, Emter CA. 2020. Large animal models of heart failure: a translational bridge to clinical success. JACC:Basic to Translational Science, 5(8): 840−856. doi: 10.1016/j.jacbts.2020.04.011
    [107]
    Skyschally A, Schulz R, Heusch G. 2010. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovascular Drugs and Therapy, 24(1): 85−87. doi: 10.1007/s10557-010-6219-y
    [108]
    Skyschally A, Van Caster P, Boengler K, et al. 2009. Ischemic postconditioning in pigs: no causal role for RISK activation. Circulation Research, 104(1): 15−18. doi: 10.1161/CIRCRESAHA.108.186429
    [109]
    Spannbauer A, Traxler D, Zlabinger K, et al. 2019. Large animal models of heart failure with reduced ejection fraction (HFrEF). Frontiers in Cardiovascular Medicine, 6: 117. doi: 10.3389/fcvm.2019.00117
    [110]
    Spata T, Bobek D, Whitson BA, et al. 2013. A nonthoracotomy myocardial infarction model in an ovine using autologous platelets. BioMed Research International, 2013: 938047.
    [111]
    Steppan J, Jandu S, Wang HL, et al. 2020. Commonly used mouse strains have distinct vascular properties. Hypertension Research, 43(11): 1175−1181. doi: 10.1038/s41440-020-0467-4
    [112]
    Stone LLH, Swingen C, Wright C, et al. 2021. Recovery of hibernating myocardium using stem cell patch with coronary bypass surgery. The Journal of Thoracic and Cardiovascular Surgery, 162(1): e3−e16. doi: 10.1016/j.jtcvs.2019.12.073
    [113]
    Strungs EG, Ongstad EL, O’Quinn MP, et al. 2013. Cryoinjury models of the adult and neonatal mouse heart for studies of scarring and regeneration. In: Gourdie RG, Myers TA. Wound Regeneration and Repair. Totowa: Springer, 343–353.
    [114]
    Sun Q, Wang KK, Pan M, et al. 2018. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. Journal of Cellular and Molecular Medicine, 22(11): 5208−5219. doi: 10.1111/jcmm.13708
    [115]
    Sun SJ, Jiang Y, Zhen Z, et al. 2020. Establishing a swine model of post-myocardial infarction heart failure for stem cell treatment. Journal of Visualized Experiments, (159): e60392.
    [116]
    Sun XR, Cai JD, Fan X, et al. 2013. Decreases in electrocardiographic R-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation. PLoS One, 8(8): e71876. doi: 10.1371/journal.pone.0071876
    [117]
    Teramoto N, Koshino K, Yokoyama I, et al. 2011. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. Journal of Nuclear Medicine, 52(5): 761−768. doi: 10.2967/jnumed.110.084848
    [118]
    Thomas R, Cheng YL, Yan J, et al. 2010. Upregulation of coronary endothelial P-selectin in a monkey heart ischemia reperfusion model. Journal of Molecular Histology, 41(4): 277−287.
    [119]
    Thomas R, Thai K, Barry J, et al. 2021. T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction. Magnetic Resonance Imaging, 79: 1−4. doi: 10.1016/j.mri.2021.02.011
    [120]
    Thompson RB, Emani SM, Davis BH, et al. 2003. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation, 108(10 Suppl 1): II–264–II–271.
    [121]
    Tohno Y, Tohno S, Laleva L, et al. 2008. Age-related changes of elements in the coronary arteries of monkeys in comparison with those of humans. Biological Trace Element Research, 125(2): 141−153. doi: 10.1007/s12011-008-8167-y
    [122]
    Trankle C, Thurber CJ, Toldo S, et al. 2016. Mitochondrial membrane permeability inhibitors in acute myocardial infarction: still awaiting translation. JACC:Basic to Translational Science, 1(6): 524−535. doi: 10.1016/j.jacbts.2016.06.012
    [123]
    Valen G. 2003. Cellular signalling mechanisms in adaptation to ischemia-induced myocardial damage. Annals of Medicine, 35(5): 300−307. doi: 10.1080/07853890310001348
    [124]
    Van Amerongen MJ, Harmsen MC, Petersen AH, et al. 2008. Cryoinjury: a model of myocardial regeneration. Cardiovascular Pathology, 17(1): 23−31. doi: 10.1016/j.carpath.2007.03.002
    [125]
    Van Den Bos EJ, Mees BME, De Waard MC, et al. 2005. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. American Journal of Physiology-Heart and Circulatory Physiology, 289(3): H1291−H1300. doi: 10.1152/ajpheart.00111.2005
    [126]
    Van Der Worp HB, Howells DW, Sena ES, et al. 2010. Can animal models of disease reliably inform human studies?. PLoS Medicine, 7(3): e1000245. doi: 10.1371/journal.pmed.1000245
    [127]
    Varga ZV, Giricz Z, Bencsik P, et al. 2015. Functional genomics of cardioprotection by ischemic conditioning and the influence of comorbid conditions: implications in target identification. Current Drug Targets, 16(8): 904−911. doi: 10.2174/1389450116666150427154203
    [128]
    Virag JAI, Lust RM. 2011. Coronary artery ligation and intramyocardial injection in a murine model of infarction. Journal of Visualized Experiments, (52): e2581.
    [129]
    Virani SS, Alonso A, Aparicio HJ, et al. 2021. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation, 143(8): e254−e743.
    [130]
    Virani SS, Alonso A, Benjamin EJ, et al. 2020. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, 141(9): e139−e596.
    [131]
    Wang KK, Han PF, Huang L, et al. 2022. An improved monkey model of myocardial ischemic infarction for cardiovascular drug development. Cardiovascular Toxicology, 22(9): 787−801. doi: 10.1007/s12012-022-09754-6
    [132]
    Wang XH, Jameel MN, Li QL, et al. 2009. Stem cells for myocardial repair with use of a transarterial catheter. Circulation, 120(11 Suppl 1): S238–S246.
    [133]
    Wang YQ, Cai W, Wang L, et al. 2016. Evaluate the early changes of myocardial fibers in rhesus monkey during sub-acute stage of myocardial infarction using diffusion tensor magnetic resonance imaging. Magnetic Resonance Imaging, 34(4): 391−396. doi: 10.1016/j.mri.2015.12.007
    [134]
    Wei K, Jayaweera AR, Firoozan S, et al. 1998. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation, 97(5): 473−483. doi: 10.1161/01.CIR.97.5.473
    [135]
    Wolf D, Reinhard A, Seckinger A, et al. 2009. Dose-dependent effects of intravenous allogeneic mesenchymal stem cells in the infarcted porcine heart. Stem Cells and Development, 18(2): 321−330. doi: 10.1089/scd.2008.0019
    [136]
    Xu ZB, Alloush J, Beck E, et al. 2014. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. Journal of Visualized Experiments, (86): e51329.
    [137]
    Yang PL, Han PF, Hou JL, et al. 2011. Electrocardiographic characterization of rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovascular Toxicology, 11(4): 365−372. doi: 10.1007/s12012-011-9129-8
    [138]
    Yang YM, Sun JK, Gervai P, et al. 2010. Characterization of cryoinjury-induced infarction with manganese-and gadolinium-enhanced MRI and optical spectroscopy in pig hearts. Magnetic Resonance Imaging, 28(5): 753−766. doi: 10.1016/j.mri.2010.02.001
    [139]
    Yano R, Inadomi C, Luo L, et al. 2018. The effect of transient oxygenation on stem cell mobilization and ischemia/reperfusion heart injury. PLoS One, 13(2): e0192733. doi: 10.1371/journal.pone.0192733
    [140]
    Yellon DM, Hausenloy DJ. 2007. Myocardial reperfusion injury. The New England Journal of Medicine, 357(11): 1121−1135. doi: 10.1056/NEJMra071667
    [141]
    Zhao JJ, Liu XC, Kong F, et al. 2014. Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction. Molecular Medicine Reports, 10(3): 1448−1454. doi: 10.3892/mmr.2014.2378
    [142]
    Zollikofer C, Castaneda-Zuniga W, Vlodaver Z, et al. 1981. Experimental myocardial infarction in the closed-chest dog: a new technique. Investigative Radiology, 16(1): 7−12. doi: 10.1097/00004424-198101000-00002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (467) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return