Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Wenjuan Zhu, Cecilia W. Lo. Insights into the genetic architecture of congenital heart disease from animal modeling. Zoological Research, 2023, 44(3): 577-590. doi: 10.24272/j.issn.2095-8137.2022.463
Citation: Wenjuan Zhu, Cecilia W. Lo. Insights into the genetic architecture of congenital heart disease from animal modeling. Zoological Research, 2023, 44(3): 577-590. doi: 10.24272/j.issn.2095-8137.2022.463

Insights into the genetic architecture of congenital heart disease from animal modeling

doi: 10.24272/j.issn.2095-8137.2022.463
The authors declare that they have no competing interests.
W.Z. and C.W.L. conceived the project and jointly wrote the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This study was supported by NIH grants HL132024 and HL142788
More Information
  • Corresponding author: E-mail: cel36@pitt.edu
  • Received Date: 2022-01-22
  • Accepted Date: 2023-04-28
  • Published Online: 2023-05-04
  • Publish Date: 2023-05-18
  • Congenital heart disease (CHD) is observed in up to 1% of live births and is one of the leading causes of mortality from birth defects. While hundreds of genes have been implicated in the genetic etiology of CHD, their role in CHD pathogenesis is still poorly understood. This is largely a reflection of the sporadic nature of CHD, as well as its variable expressivity and incomplete penetrance. We reviewed the monogenic causes and evidence for oligogenic etiology of CHD, as well as the role of de novo mutations, common variants, and genetic modifiers. For further mechanistic insight, we leveraged single-cell data across species to investigate the cellular expression characteristics of genes implicated in CHD in developing human and mouse embryonic hearts. Understanding the genetic etiology of CHD may enable the application of precision medicine and prenatal diagnosis, thereby facilitating early intervention to improve outcomes for patients with CHD.
  • The authors declare that they have no competing interests.
    W.Z. and C.W.L. conceived the project and jointly wrote the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Aghajanian H, Cho YK, Rizer NW, et al. 2017. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries. Disease Models & Mechanisms, 10(9): 1101−1108.
    Alankarage D, Ip E, Szot JO, et al. 2019. Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genetics in Medicine, 21(5): 1111−1120. doi: 10.1038/s41436-018-0296-x
    Asp M, Giacomello S, Larsson L, et al. 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell, 179(7): 1647−1660.e19. doi: 10.1016/j.cell.2019.11.025
    Bauer RC, Laney AO, Smith R, et al. 2010. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Human Mutation, 31(5): 594−601. doi: 10.1002/humu.21231
    Bleyl SB, Saijoh Y, Bax NA, et al. 2010. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Human Molecular Genetics, 19(7): 1286−1301. doi: 10.1093/hmg/ddq005
    Botto LD, Correa A, Erickson JD. 2001. Racial and temporal variations in the prevalence of heart defects. Pediatrics, 107(3): e32. doi: 10.1542/peds.107.3.e32
    Boycott KM, Vanstone MR, Bulman DE, et al. 2013. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nature Reviews Genetics, 14(10): 681−691. doi: 10.1038/nrg3555
    Caspary T, Larkins CE, Anderson KV. 2007. The graded response to sonic hedgehog depends on cilia architecture. Developmental Cell, 12(5): 767−778. doi: 10.1016/j.devcel.2007.03.004
    Chandra S, Lang RM, Nicolarsen J, et al. 2012. Bicuspid aortic valve: inter-racial difference in frequency and aortic dimensions. JACC:Cardiovascular Imaging, 5(10): 981−989. doi: 10.1016/j.jcmg.2012.07.008
    Chen R, Shi LS, Hakenberg J, et al. 2016. Analysis of 589, 306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 34(5): 531−538. doi: 10.1038/nbt.3514
    Chen YW, Zhao W, Zhang ZF, et al. 2011. Familial nonsyndromic patent ductus arteriosus caused by mutations in TFAP2B. Pediatric Cardiology, 32(7): 958–965.
    Cordell HJ, Bentham J, Topf A, et al. 2013a. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nature Genetics, 45(7): 822−824. doi: 10.1038/ng.2637
    Cordell HJ, Töpf A, Mamasoula C, et al. 2013b. Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot. Human Molecular Genetics, 22(7): 1473−1481. doi: 10.1093/hmg/dds552
    Cowan JR, Ware SM. 2015. Genetics and genetic testing in congenital heart disease. Clinics in Perinatology, 42(2): 373−393. doi: 10.1016/j.clp.2015.02.009
    Damrauer SM, Hardie K, Kember RL, et al. 2019. FBN1 coding variants and nonsyndromic aortic disease. Circulation:Genomic and Precision Medicine, 12(6): e002454. doi: 10.1161/CIRCGEN.119.002454
    Diab NS, Barish S, Dong WL, et al. 2021. Molecular genetics and complex inheritance of congenital heart disease. Genes, 12(7): 1020. doi: 10.3390/genes12071020
    Djenoune L, Berg K, Brueckner M, et al. 2022. A change of heart: new roles for cilia in cardiac development and disease. Nature Reviews Cardiology, 19(4): 211−227. doi: 10.1038/s41569-021-00635-z
    Egbe A, Lee S, Ho D, et al. 2014. Prevalence of congenital anomalies in newborns with congenital heart disease diagnosis. Annals of Pediatric Cardiology, 7(2): 86−91. doi: 10.4103/0974-2069.132474
    Fahed AC, Gelb BD, Seidman JG, et al. 2013. Genetics of congenital heart disease: the glass half empty. Circulation Research, 112(4): 707−720. doi: 10.1161/CIRCRESAHA.112.300853
    Ferencz C, Rubin JD, McCarter RJ, et al. 1985. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. American Journal of Epidemiology, 121(1): 31−36. doi: 10.1093/oxfordjournals.aje.a113979
    Firth HV, Wright CF, DDD Study. 2011. The deciphering developmental disorders (DDD) study. Developmental Medicine & Child Neurology, 53(8): 702−703.
    Francke U. 1999. Williams-Beuren syndrome: genes and mechanisms. Human Molecular Genetics, 8(10): 1947−1954. doi: 10.1093/hmg/8.10.1947
    Gabriel GC, Lo CW. 2020. Left-right patterning in congenital heart disease beyond heterotaxy. American Journal of Medical Genetics Part C:Seminars in Medical Genetics, 184(1): 90−96. doi: 10.1002/ajmg.c.31768
    Gabriel GC, Young CB, Lo CW. 2021. Role of cilia in the pathogenesis of congenital heart disease. Seminars in Cell & Developmental Biology, 110: 2−10.
    Garg V. 2006. Insights into the genetic basis of congenital heart disease. Cellular and Molecular Life Sciences CMLS, 63(10): 1141−1148. doi: 10.1007/s00018-005-5532-2
    Gibbs BC, Damerla RR, Vladar EK, et al. 2016. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects. Biology Open, 5(3): 323−335. doi: 10.1242/bio.015750
    Gifford CA, Ranade SS, Samarakoon R, et al. 2019. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 364(6443): 865−870. doi: 10.1126/science.aat5056
    Hayano S, Okuno Y, Tsutsumi M, et al. 2019. Frequent intragenic microdeletions of elastin in familial supravalvular aortic stenosis. International Journal of Cardiology, 274: 290−295. doi: 10.1016/j.ijcard.2018.09.032
    Hill MC, Kadow ZA, Li LL, et al. 2019. A cellular atlas of Pitx2-dependent cardiac development. Development, 146(12): dev180398. doi: 10.1242/dev.180398
    Hoffman JIE, Kaplan S. 2002. The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12): 1890−1900. doi: 10.1016/S0735-1097(02)01886-7
    Homsy J, Zaidi S, Shen Y, et al. 2015. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 350(6265): 1262−1266. doi: 10.1126/science.aac9396
    Hsieh A, Morton SU, Willcox JAL, et al. 2020. EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Medicine, 12(1): 42. doi: 10.1186/s13073-020-00738-1
    Jenkins KJ, Correa A, Feinstein JA, et al. 2007. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation, 115(23): 2995−3014. doi: 10.1161/CIRCULATIONAHA.106.183216
    Jiang T, Huang M, Jiang T, et al. 2018. Genome-wide compound heterozygosity analysis highlighted 4 novel susceptibility loci for congenital heart disease in Chinese population. Clinical Genetics, 94(3–4): 296–302.
    Jin SC, Homsy J, Zaidi S, et al. 2017. Contribution of rare inherited and de novo variants in 2, 871 congenital heart disease probands. Nature Genetics, 49(11): 1593−1601. doi: 10.1038/ng.3970
    Khetyar M, Syrris P, Tinworth L, et al. 2008. Novel TFAP2B mutation in nonsyndromic patent ductus arteriosus. Genetic Testing, 12(3): 457−459. doi: 10.1089/gte.2008.0015
    Koefoed K, Veland IR, Pedersen LB, et al. 2014. Cilia and coordination of signaling networks during heart development. Organogenesis, 10(1): 108−125. doi: 10.4161/org.27483
    Lahm H, Deutsch MA, Dreßen M, et al. 2013. Mutational analysis of the human MESP1 gene in patients with congenital heart disease reveals a highly variable sequence in exon 1. European Journal of Medical Genetics, 56(11): 591−598. doi: 10.1016/j.ejmg.2013.09.001
    Larson MG, Atwood LD, Benjamin EJ, et al. 2007. Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Medical Genetics, 8 Suppl 1(Suppl 1): S5.
    Lewandowski SL, Janardhan HP, Trivedi CM. 2015. Histone deacetylase 3 coordinates deacetylase-independent epigenetic silencing of transforming growth factor-β (TGF-β) to orchestrate second heart field development. Journal of Biological Chemistry, 290(45): 27067−27089. doi: 10.1074/jbc.M115.684753
    Li LH, Krantz ID, Deng Y, et al. 1997. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics, 16(3): 243−251. doi: 10.1038/ng0797-243
    Li Y, Klena NT, Gabriel GC, et al. 2015. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature, 521(7553): 520−524. doi: 10.1038/nature14269
    Li YJ, Wei X, Zhao ZG, et al. 2017. Prevalence and complications of bicuspid aortic valve in Chinese according to echocardiographic database. The American Journal of Cardiology, 120(2): 287−291. doi: 10.1016/j.amjcard.2017.04.025
    Lickert H, Takeuchi JK, von Both I, et al. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 432(7013): 107−112. doi: 10.1038/nature03071
    Liu XQ, Yagi H, Saeed S, et al. 2017. The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 49(7): 1152−1159. doi: 10.1038/ng.3870
    Liu XY, Chen W, Li WK, et al. 2020. Exome-based case-control analysis highlights the pathogenic role of ciliary genes in transposition of the great arteries. Circulation Research, 126(7): 811−821. doi: 10.1161/CIRCRESAHA.119.315821
    Manheimer KB, Richter F, Edelmann LJ, et al. 2018. Robust identification of mosaic variants in congenital heart disease. Human Genetics, 137(2): 183−193. doi: 10.1007/s00439-018-1871-6
    Mantri M, Scuderi GJ, Abedini-Nassab R, et al. 2021. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nature Communications, 12(1): 1771. doi: 10.1038/s41467-021-21892-z
    Marelli AJ, Mackie AS, Ionescu-Ittu R, et al. 2007. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation, 115(2): 163−172. doi: 10.1161/CIRCULATIONAHA.106.627224
    McGrath J, Somlo S, Makova S, et al. 2003. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 114(1): 61−73. doi: 10.1016/S0092-8674(03)00511-7
    Miao YF, Tian L, Martin M, et al. 2020. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell, 27(4): 574−589.e8. doi: 10.1016/j.stem.2020.07.015
    Micale L, Turturo MG, Fusco C, et al. 2010. Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. European Journal of Human Genetics, 18(3): 317−323. doi: 10.1038/ejhg.2009.181
    Mone F, Eberhardt RY, Morris RK, et al. 2021. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound in Obstetrics & Gynecology, 57(1): 43−51.
    Montgomery RL, Davis CA, Potthoff MJ, et al. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & Development, 21(14): 1790−1802.
    Morton SU, Quiat D, Seidman JG, et al. 2022. Genomic frontiers in congenital heart disease. Nature Reviews Cardiology, 19(1): 26−42. doi: 10.1038/s41569-021-00587-4
    Nakhleh N, Francis R, Giese RA, et al. 2012. High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy. Circulation, 125(18): 2232−2242. doi: 10.1161/CIRCULATIONAHA.111.079780
    Nees SN, Chung WK. 2020. Genetic basis of human congenital heart disease. Cold Spring Harbor Perspectives in Biology, 12(9): a036749. doi: 10.1101/cshperspect.a036749
    Noonan JP, Li J, Nguyen L, et al. 2003. Extensive linkage disequilibrium, a common 16.7-kilobase deletion, and evidence of balancing selection in the human protocadherin α cluster. American Journal of Human Genetics, 72(3): 621−635. doi: 10.1086/368060
    Nora JJ, Dodd PF, McNamara DG, et al. 1969. Risk to offspring of parents with congenital heart defects. JAMA, 209(13): 2052−2053. doi: 10.1001/jama.1969.03160260056018
    Oda T, Elkahloun AG, Pike BL, et al. 1997. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genetics, 16(3): 235−242. doi: 10.1038/ng0797-235
    Ohtani K, Dimmeler S. 2011. Epigenetic regulation of cardiovascular differentiation. Cardiovascular Research, 90(3): 404−412. doi: 10.1093/cvr/cvr019
    Oster ME, Lee KA, Honein MA, et al. 2013. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics, 131(5): e1502−e1508. doi: 10.1542/peds.2012-3435
    Øyen N, Poulsen G, Boyd HA, et al. 2009. Recurrence of congenital heart defects in families. Circulation, 120(4): 295−301. doi: 10.1161/CIRCULATIONAHA.109.857987
    Pediatric Cardiac Genomics Consortium Writing Committee, Gelb B, Brueckner M, et al. 2013. The congenital heart disease genetic network study: rationale, design, and early results. Circulation Research, 112(4): 698−706. doi: 10.1161/CIRCRESAHA.111.300297
    Pickardt T, Niggemeyer E, Bauer UMM, et al. 2016. A biobank for long-term and sustainable research in the field of congenital heart disease in Germany. Genomics, Proteomics & Bioinformatics, 14(4): 181−190.
    Pierpont ME, Brueckner M, Chung WK, et al. 2018. Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association. Circulation, 138(21): e653−e711.
    Reuter MS, Chaturvedi RR, Liston E, et al. 2020. The Cardiac Genome Clinic: implementing genome sequencing in pediatric heart disease. Genetics in Medicine, 22(6): 1015−1024. doi: 10.1038/s41436-020-0757-x
    Richter F, Morton SU, Kim SW, et al. 2020. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 52(8): 769−777. doi: 10.1038/s41588-020-0652-z
    Satoda M, Zhao F, Diaz GA, et al. 2000. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genetics, 25(1): 42−46. doi: 10.1038/75578
    Sifrim A, Hitz MP, Wilsdon A, et al. 2016. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nature Genetics, 48(9): 1060−1065. doi: 10.1038/ng.3627
    Siu SC, Silversides CK. 2010. Bicuspid aortic valve disease. Journal of the American College of Cardiology, 55(25): 2789−2800. doi: 10.1016/j.jacc.2009.12.068
    Smemo S, Campos LC, Moskowitz IP, et al. 2012. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Human Molecular Genetics, 21(14): 3255−3263. doi: 10.1093/hmg/dds165
    Smith T, Rajakaruna C, Caputo M, et al. 2015. MicroRNAs in congenital heart disease. Annals of Translational Medicine, 3(21): 333.
    Soemedi R, Wilson IJ, Bentham J, et al. 2012. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. The American Journal of Human Genetics, 91(3): 489−501. doi: 10.1016/j.ajhg.2012.08.003
    Sund KL, Roelker S, Ramachandran V, et al. 2009. Analysis of Ellis van Creveld syndrome gene products: implications for cardiovascular development and disease. Human Molecular Genetics, 18(10): 1813−1824. doi: 10.1093/hmg/ddp098
    Teekakirikul P, Zhu WJ, Gabriel GC, et al. 2021. Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of BAV and left-sided congenital heart disease. Human Genetics and Genomics Advances, 2(3): 100037. doi: 10.1016/j.xhgg.2021.100037
    Teekakirikul P, Zhu WJ, Xu XX, et al. 2022. Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Reports Medicine, 3(2): 100501. doi: 10.1016/j.xcrm.2021.100501
    Toomer KA, Yu MY, Fulmer D, et al. 2019. Primary cilia defects causing mitral valve prolapse. Science Translational Medicine, 11(493): eaax0290. doi: 10.1126/scitranslmed.aax0290
    Triedman JK, Newburger JW. 2016. Trends in congenital heart disease: the next decade. Circulation, 133(25): 2716−2733. doi: 10.1161/CIRCULATIONAHA.116.023544
    van der Bom T, Zomer AC, Zwinderman AH, et al. 2011. The changing epidemiology of congenital heart disease. Nature Reviews Cardiology, 8(1): 50−60. doi: 10.1038/nrcardio.2010.166
    Wang GL, Wang BB, Yang PX. 2022. Epigenetics in congenital heart disease. Journal of the American Heart Association, 11(7): e025163. doi: 10.1161/JAHA.121.025163
    Watkins WS, Hernandez EJ, Wesolowski S, et al. 2019. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nature Communications, 10(1): 4722. doi: 10.1038/s41467-019-12582-y
    Werner P, Latney B, Deardorff MA, e al. 2016. MESP1 mutations in patients with congenital heart defects. Human Mutation, 37(3): 308−314. doi: 10.1002/humu.22947
    Williams K, Carson J, Lo C. 2019. Genetics of congenital heart disease. Biomolecules, 9(12): 879. doi: 10.3390/biom9120879
    Xu J, Hu ZB, Xu ZF, et al. 2009. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Human Mutation, 30(8): 1231−1236. doi: 10.1002/humu.21044
    Yagi H, Liu XQ, Gabriel GC, et al. 2018. The genetic landscape of hypoplastic left heart syndrome. Pediatric Cardiology, 39(6): 1069−1081. doi: 10.1007/s00246-018-1861-4
    Zaidi S, Brueckner M. 2017. Genetics and genomics of congenital heart disease. Circulation Research, 120(6): 923−940. doi: 10.1161/CIRCRESAHA.116.309140
    Zaidi S, Choi M, Wakimoto H, et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498(7453): 220−223. doi: 10.1038/nature12141
    Zhang M, Li FX, Liu XY, et al. 2017. MESP1 loss-of-function mutation contributes to double outlet right ventricle. Molecular Medicine Reports, 16(3): 2747−2754. doi: 10.3892/mmr.2017.6875
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (824) PDF downloads(194) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint