Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Ying Wang, Hua-Min Wang, Yan Zhou, Ling-Hong Hu, Jing-Ming Wan, Ji-Hui Yang, Hong-Bo Niu, Xiu-Ping Hong, Peng Hu, Liang-Biao Chen. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zoological Research, 2023, 44(1): 126-141. doi: 10.24272/j.issn.2095-8137.2022.397
Citation: Ying Wang, Hua-Min Wang, Yan Zhou, Ling-Hong Hu, Jing-Ming Wan, Ji-Hui Yang, Hong-Bo Niu, Xiu-Ping Hong, Peng Hu, Liang-Biao Chen. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zoological Research, 2023, 44(1): 126-141. doi: 10.24272/j.issn.2095-8137.2022.397

Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity

doi: 10.24272/j.issn.2095-8137.2022.397
All Illumina RNA sequencing data from this project were deposited at NCBI under BioProjectID PRJNA602594, National Genomics Data Center (GSA: CRA008815), and Science Data Bank (DOI: 10.57760/sciencedb.06296).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
Y.W. and L.B.C. designed the experiment, completed data analysis, and wrote the manuscript. H.M.W., L.H.H., J.M.W., J.H.Y., H.B.N., and X.P.H. performed the experiments. Y.Z. and P.H. helped with analyses and constructive discussion. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the National Key Research and Development Program of China (2018YFD0900601) and National Natural Science Foundation of China (32130109)
More Information
  • Corresponding author: E-mail: lbchen@shou.edu.cn
  • Received Date: 2022-10-26
  • Accepted Date: 2022-11-23
  • Published Online: 2022-11-23
  • Publish Date: 2023-01-18
  • Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1-/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
  • All Illumina RNA sequencing data from this project were deposited at NCBI under BioProjectID PRJNA602594, National Genomics Data Center (GSA: CRA008815), and Science Data Bank (DOI: 10.57760/sciencedb.06296).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    Y.W. and L.B.C. designed the experiment, completed data analysis, and wrote the manuscript. H.M.W., L.H.H., J.M.W., J.H.Y., H.B.N., and X.P.H. performed the experiments. Y.Z. and P.H. helped with analyses and constructive discussion. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Aksamitiene E, Kiyatkin A, Kholodenko BN. 2012. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochemical Society Transactions, 40(1): 139−146. doi: 10.1042/BST20110609
    [2]
    Ballard JWO, Whitlock MC. 2004. The incomplete natural history of mitochondria. Molecular Ecology, 13(4): 729−744. doi: 10.1046/j.1365-294X.2003.02063.x
    [3]
    Balloux F, Handley LJL, Jombart T, Liu H, Manica A. 2009. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proceedings of the Royal Society B:Biological Sciences, 276(1672): 3447−3455. doi: 10.1098/rspb.2009.0752
    [4]
    Beyfuss K, Hood DA. 2018. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Report, 23(1): 100−117. doi: 10.1080/13510002.2017.1416773
    [5]
    Cai JH, Yeh TF, Wei HW, Liu IH. 2019. Temperature-induced embryonic diapause in blue-breasted quail (Coturnix chinensis) correlates with decreased mitochondrial-respiratory network and increased stress-response network. Poultry Science, 98(7): 2977−2988. doi: 10.3382/ps/pez116
    [6]
    Chen LB, Lu Y, Li WH, Ren YD, Yu MC, Jiang SW, et al. 2019. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. GigaScience, 8(4): giz016.
    [7]
    Chen ZZ, Cheng CHC, Zhang JF, Cao LX, Chen L, Zhou LH, et al. 2008. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences of the United States of America, 105(35): 12944−12949. doi: 10.1073/pnas.0802432105
    [8]
    Cheviron ZA, Brumfield RT. 2009. Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrows (Zonotrichia capensis) along an elevational gradient. Evolution, 63(6): 1593−1605. doi: 10.1111/j.1558-5646.2009.00644.x
    [9]
    Chung DJ, Schulte PM. 2020. Mitochondria and the thermal limits of ectotherms. Journal of Experimental Biology, 223(20): jeb227801. doi: 10.1242/jeb.227801
    [10]
    Comalada M, Lloberas J, Celada A. 2012. MKP-1: a critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. European Journal of Immunology, 42(8): 1938−1948. doi: 10.1002/eji.201242441
    [11]
    Consuegra S, John E, Verspoor E, de Leaniz CG. 2015. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genetics Selection Evolution, 47(1): 58. doi: 10.1186/s12711-015-0138-0
    [12]
    Dilorio PJ, Holsinger K, Schultz RJ, Hightower LE. 1996. Quantitative evidence that both Hsc70 and Hsp70 contribute to thermal adaptation in hybrids of the livebearing fishes Poeciliopsis. Cell Stress & Chaperones, 1(2): 139–147.
    [13]
    Dowling DK. 2014. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(4): 1393–1403.
    [14]
    Fader SC, Yu ZM, Spotila JR. 1994. Seasonal variation in heat shock proteins (hsp 70) in stream fish under natural conditions. Journal of Thermal Biology, 19(5): 335−341. doi: 10.1016/0306-4565(94)90070-1
    [15]
    Farrell AP. 2002. Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 132(4): 797−810.
    [16]
    Gerber L, Clow KA, Gamperl AK. 2021. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon (Salmo salar). Journal of Experimental Biology, 224(2): jeb236257.
    [17]
    Gerlach GF, Turay L, Malik KT, Lida J, Scutt A, Goldspink G. 1990. Mechanisms of temperature acclimation in the carp: a molecular biology approach. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 259(2): R237−R244. doi: 10.1152/ajpregu.1990.259.2.R237
    [18]
    Gracey AY, Fraser EJ, Li WZ, Fang YX, Taylor RR, Rogers J, et al. 2004. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 101(48): 16970−16975. doi: 10.1073/pnas.0403627101
    [19]
    Gui C, Ren YX, Chen JL, Wu X, Mao KM, Li HH, et al. 2020. p38 MAPK-DRP1 signaling is involved in mitochondrial dysfunction and cell death in mutant A53T α-synuclein model of Parkinson's disease. Toxicology and Applied Pharmacology, 388: 114874. doi: 10.1016/j.taap.2019.114874
    [20]
    Guo X, Wang XF. 2009. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Research, 19(1): 71−88. doi: 10.1038/cr.2008.302
    [21]
    Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'agrosa C, et al. 2008. A global map of human impact on marine ecosystems. Science, 319(5865): 948−952. doi: 10.1126/science.1149345
    [22]
    Han HL, Tan JQ, Wang RX, Wan HD, He YH, Yan XX, et al. 2020. PINK1 phosphorylates Drp1S616 to regulate mitophagy‐independent mitochondrial dynamics. EMBO Reports, 21(8): e48686.
    [23]
    Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. 2008. Five potential consequences of climate change for invasive species. Conservation Biology, 22(3): 534−543. doi: 10.1111/j.1523-1739.2008.00951.x
    [24]
    Hu LH, Wang Y, Wang HM, Chen LB. 2021. Effects of different temperature stress on gill apoptosis of medaka Oryzias latipes. Journal of Dalian Ocean University, 36(6): 929–936. (in Chinese)
    [25]
    Hu P, Liu ML, Liu YM, Wang JF, Zhang D, Niu HB, et al. 2016. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. Scientific Reports, 6: 28952. doi: 10.1038/srep28952
    [26]
    Hu P, Liu ML, Zhang DM, Wang JF, Niu HB, Liu YM, et al. 2015. Global identification of the genetic networks and cis-regulatory elements of the cold response in zebrafish. Nucleic Acids Research, 43(19): 9198−9213. doi: 10.1093/nar/gkv780
    [27]
    Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A. et al. 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 7(7): 301−308. doi: 10.1016/S1360-1385(02)02302-6
    [28]
    Iftikar FI, Hickey AJR. 2013. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One, 8(5): e64120.
    [29]
    Iftikar FI, MacDonald JR, Baker DW, Renshaw GMC, Hickey AJR. 2014. Could thermal sensitivity of mitochondria determine species distribution in a changing climate?. Journal of Experimental Biology, 217(13): 2348−2357. doi: 10.1242/jeb.098798
    [30]
    Johnston PV, Roots BI. 1964. Brain lipid fatty acids and temperature acclimation. Comparative Biochemistry and Physiology, 11(3): 303−309. doi: 10.1016/0010-406X(64)90111-2
    [31]
    Jonak C, Ökrész L, Bögre L, Hirt H. 2002. Complexity, cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology, 5(5): 415−424. doi: 10.1016/S1369-5266(02)00285-6
    [32]
    Ju Z, Dunham R, Liu Z. 2002. Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Molecular Genetics and Genomics, 268(1): 87−95. doi: 10.1007/s00438-002-0727-9
    [33]
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. 2010. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38(S1): D355−D360.
    [34]
    Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. 2015. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Molecular Cell, 57(3): 537−551. doi: 10.1016/j.molcel.2015.01.002
    [35]
    Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, et al. 2019. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nature Ecology & Evolution, 3(3): 469−478.
    [36]
    Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [37]
    Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS. 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research, 19(7): 1279−1288. doi: 10.1101/gr.089417.108
    [38]
    Kolch W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Reviews Molecular Cell Biology, 6(11): 827−837. doi: 10.1038/nrm1743
    [39]
    Koul HK, Pal M, Koul S. 2013. Role of p38 MAP kinase signal transduction in solid tumors. Genes & Cancer, 4(9–10): 342–359.
    [40]
    Kültz D, Burg M. 1998. Evolution of osmotic stress signaling via MAP kinase cascades. Journal of Experimental Biology, 201(22): 3015−3021. doi: 10.1242/jeb.201.22.3015
    [41]
    Lang R, Raffi FAM. 2019. Dual-specificity phosphatases in immunity and infection: an update. International Journal of Molecular Sciences, 20(11): 2710. doi: 10.3390/ijms20112710
    [42]
    Lavoie H, Therrien M. 2015. Regulation of RAF protein kinases in ERK signalling. Nature Reviews Molecular Cell Biology, 16(5): 281−298. doi: 10.1038/nrm3979
    [43]
    Li B, Yi P, Zhang B, Xu CJ, Liu QY, Pi ZJ, et al. 2011. Differences in endoplasmic reticulum stress signalling kinetics determine cell survival outcome through activation of MKP-1. Cellular Signalling, 23(1): 35−45. doi: 10.1016/j.cellsig.2010.07.019
    [44]
    Liochev SI. 2013. Reactive oxygen species and the free radical theory of aging. Free Radical Biology and Medicine, 60: 1−4. doi: 10.1016/j.freeradbiomed.2013.02.011
    [45]
    Liu B, Chen YM, Clair DKS. 2008a. ROS and p53: a versatile partnership. Free Radical Biology and Medicine, 44(8): 1529−1535. doi: 10.1016/j.freeradbiomed.2008.01.011
    [46]
    Liu YX, Wang JL, Guo JF, Wu JJ, Lieberman HB, Yin YX. 2008b. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Molecular Cancer Research, 6(4): 624−633. doi: 10.1158/1541-7786.MCR-07-2019
    [47]
    Logan CA, Somero GN. 2011. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 300(6): R1373−R1383. doi: 10.1152/ajpregu.00689.2010
    [48]
    Ma RN, Ma LN, Weng WJ, Wang YP, Liu HQ, Guo RJ, et al. 2020. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Science Advances, 6(13): eaaz0361. doi: 10.1126/sciadv.aaz0361
    [49]
    MacMillan HA. 2019. Dissecting cause from consequence: a systematic approach to thermal limits. Journal of Experimental Biology, 222(4): jeb191593. doi: 10.1242/jeb.191593
    [50]
    Mortzfeld BM, Taubenheim J, Klimovich AV, Fraune S, Rosenstiel P, Bosch TCG. 2019. Temperature and insulin signaling regulate body size in Hydra by the Wnt and TGF-beta pathways. Nature Communications, 10(1): 3257. doi: 10.1038/s41467-019-11136-6
    [51]
    Murphy MP. 2009. How mitochondria produce reactive oxygen species?. Biochemical Journal, 417(1): 1−13. doi: 10.1042/BJ20081386
    [52]
    Niu HB, Hu P, Cheng PL, Chu X, Hu C L, Chen LB. 2017. The role of dusp1 downregulation in apoptosis of zebrafish ZF4 cells under cold stress. Journal of Fishery Sciences of China, 24(5): 995−1002. (in Chinese) doi: 10.3724/SP.J.1118.2017.16358
    [53]
    Obergasteiger J, Frapporti G, Pramstaller PP, Hicks AA, Volta M. 2018. A new hypothesis for Parkinson’s disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics. Molecular Neurodegeneration, 13(1): 40. doi: 10.1186/s13024-018-0273-5
    [54]
    Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis, 12(5): 913−922. doi: 10.1007/s10495-007-0756-2
    [55]
    Overgaard J, MacMillan HA. 2017. The integrative physiology of insect chill tolerance. Annual Review of Physiology, 79: 187−208. doi: 10.1146/annurev-physiol-022516-034142
    [56]
    Peck LS, Morley SA, Richard J, Clark MS. 2014. Acclimation and thermal tolerance in Antarctic marine ectotherms. Journal of Experimental Biology, 217(1): 16−22. doi: 10.1242/jeb.089946
    [57]
    Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T, et al. 2005. Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. Journal of Experimental Medicine, 201(2): 279−289. doi: 10.1084/jem.20041502
    [58]
    Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9): e45. doi: 10.1093/nar/29.9.e45
    [59]
    Pichaud N, Ekström A, Hellgren K, Sandblom E. 2017. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout. Journal of Experimental Biology, 220(9): 1674−1683.
    [60]
    Pörtner H. 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88(4): 137−146. doi: 10.1007/s001140100216
    [61]
    Pörtner HO. 2002. Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. Journal of Experimental Biology, 205(15): 2217−2230. doi: 10.1242/jeb.205.15.2217
    [62]
    Pörtner HO. 2010. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213(6): 881−893. doi: 10.1242/jeb.037523
    [63]
    Pörtner HO. 2012. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Marine Ecology Progress Series, 470: 273−290. doi: 10.3354/meps10123
    [64]
    Pörtner HO, Bock C, Mark FC. 2017. Oxygen-and capacity-limited thermal tolerance: bridging ecology and physiology. Journal of Experimental Biology, 220(15): 2685−2696. doi: 10.1242/jeb.134585
    [65]
    Pyakurel A, Savoia C, Hess D, Scorrano L. 2015. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Molecular Cell, 58(2): 244−254. doi: 10.1016/j.molcel.2015.02.021
    [66]
    Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. 2016. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Current Opinion in Structural Biology, 41: 151−158. doi: 10.1016/j.sbi.2016.07.019
    [67]
    Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139−140. doi: 10.1093/bioinformatics/btp616
    [68]
    Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, et al. 2007. Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling, 9(1): 49−89.
    [69]
    Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, et al. 1994. Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene, 9(6): 1791−1798.
    [70]
    Sha JC, Zhang HY, Zhao Y, Feng XJ, Hu XY, Wang CR, et al. 2019. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicology and Applied Pharmacology, 364: 144−152. doi: 10.1016/j.taap.2018.12.017
    [71]
    Sharma P, Sharma N, Deswal R. 2005. The molecular biology of the low‐temperature response in plants. BioEssays, 27(10): 1048−1059. doi: 10.1002/bies.20307
    [72]
    Silva G, Lima FP, Martel P, Castilho R. 2014. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proceedings of the Royal Society B:Biological Sciences, 281(1792): 20141093. doi: 10.1098/rspb.2014.1093
    [73]
    Somero GN, DeVries AL. 1967. Temperature tolerance of some Antarctic fishes. Science, 156(3772): 257−258. doi: 10.1126/science.156.3772.257
    [74]
    Somero GN, Hochachka PW. 1971. Biochemical adaptation to the environment. American Zoologist, 11(1): 159−167. doi: 10.1093/icb/11.1.159
    [75]
    Somero GN. 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integrative and Comparative Biology, 42(4): 780−789. doi: 10.1093/icb/42.4.780
    [76]
    Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213(6): 912−920. doi: 10.1242/jeb.037473
    [77]
    Somero GN. 2011. Comparative physiology: a “crystal ball” for predicting consequences of global change. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 301(1): R1−R14. doi: 10.1152/ajpregu.00719.2010
    [78]
    Somero GN. 2020. The cellular stress response and temperature: function, regulation, and evolution. Journal of Experimental Zoology Part A:Ecological and Integrative Physiology, 333(6): 379−397. doi: 10.1002/jez.2344
    [79]
    Son Y, Kim S, Chung HT, Pae HO. 2013. Reactive oxygen species in the activation of MAP kinases. Methods in Enzymology, 528: 27−48.
    [80]
    Stillman JH. 2003. Acclimation capacity underlies susceptibility to climate change. Science, 301(5629): 65. doi: 10.1126/science.1083073
    [81]
    St-Pierre J, Charest PM, Guderley H. 1998. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology, 201(21): 2961–2970.
    [82]
    Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, et al. 2015. Transcriptional response to acute thermal exposure in juvenile Chinook salmon determined by RNAseq. G3 Genes| Genomes| Genetics, 5(7): 1335−1349.
    [83]
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. 2010. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nature Biotechnology, 28(5): 511−515. doi: 10.1038/nbt.1621
    [84]
    Tseng YC, Chen RD, Lucassen M, Schmidt MM, Dringen R, Abele D, et al. 2011. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish. PLoS One, 6(3): e18180. doi: 10.1371/journal.pone.0018180
    [85]
    Uhlitz F, Sieber A, Wyler E, Fritsche-Guenther R, Meisig J, Landthaler M, et al. 2017. An immediate–late gene expression module decodes ERK signal duration. Molecular Systems Biology, 13(5): 928. doi: 10.15252/msb.20177554
    [86]
    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth's ecosystems. Science, 277(5325): 494−499. doi: 10.1126/science.277.5325.494
    [87]
    Wancket LM, Frazier WJ, Liu YS. 2012. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sciences, 90(7–8): 237–248.
    [88]
    Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. 2017. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Research, 45(W1): W130−W137. doi: 10.1093/nar/gkx356
    [89]
    Winter-Vann AM, Johnson GL. 2007. Integrated activation of MAP3Ks balances cell fate in response to stress. Journal of Cellular Biochemistry, 102(4): 848−858. doi: 10.1002/jcb.21522
    [90]
    Wu GS. 2004. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biology & Therapy, 3(2): 156−161.
    [91]
    Zhang MP, Zhang Y, Scheuring CF, Wu CC, Dong JJ, Zhang HB. 2012. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nature Protocols, 7(3): 467−478. doi: 10.1038/nprot.2011.455
    [92]
    Zhuang XN, Ma J, Xu SS, Zhang M, Xu GZ, Sun ZC. 2021. All-trans retinoic acid attenuates blue light-induced apoptosis of retinal photoreceptors by upregulating MKP-1 expression. Molecular Neurobiology, 58(8): 4157−4168. doi: 10.1007/s12035-021-02380-3
  • ZR-2022-397-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1684) PDF downloads(327) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return