Volume 44 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Bi-Jun Li, Lin Chen, Meng-Zhen Yan, Xiao-Qing Zou, Yu-Lin Bai, Ya-Guo Xue, Zhou Jiang, Bao-Hua Chen, Cheng-Yu Li, Qian He, Jian-Xin Feng, Tao Zhou, Peng Xu. Intercross population study reveals that co-mutation of mitfa genes in two subgenomes induces red skin color in common carp (Cyprinus carpio wuyuanensis). Zoological Research, 2023, 44(2): 276-286. doi: 10.24272/j.issn.2095-8137.2022.388
Citation: Bi-Jun Li, Lin Chen, Meng-Zhen Yan, Xiao-Qing Zou, Yu-Lin Bai, Ya-Guo Xue, Zhou Jiang, Bao-Hua Chen, Cheng-Yu Li, Qian He, Jian-Xin Feng, Tao Zhou, Peng Xu. Intercross population study reveals that co-mutation of mitfa genes in two subgenomes induces red skin color in common carp (Cyprinus carpio wuyuanensis). Zoological Research, 2023, 44(2): 276-286. doi: 10.24272/j.issn.2095-8137.2022.388

Intercross population study reveals that co-mutation of mitfa genes in two subgenomes induces red skin color in common carp (Cyprinus carpio wuyuanensis)

doi: 10.24272/j.issn.2095-8137.2022.388
All sequencing data generated in this study were deposited at the Sequence Read Archive (https://ncbi.nlm.nih.gov/sra) under BioProjectID PRJNA510861, PRJNA824207, PRJNA853462, and PRJNA853504, Genome Sequence Archive (GSA) database of the National Genomics Data Center (NGDC) under accession number CRA009294, and Science Data Bank (doi: 10.57760/sciencedb.j00139.00045).
Supplementary data to this article can be found online.
Funds:  This work was supported by the National Key R&D Program of China (2019YFE0119000), National Natural Science Foundation of China (31872561), National Science Fund for Distinguished Young Scholars (32225049), and Alliance of International Science Organizations (ANSO-CR-PP-2021-03)
More Information
  • Corresponding author: E-mail: xupeng77@xmu.edu.cn
  • Received Date: 2022-12-11
  • Accepted Date: 2023-02-10
  • Published Online: 2023-02-11
  • Publish Date: 2023-03-18
  • Common carp are among the oldest domesticated fish in the world. As such, there are many food and ornamental carp strains with abundant phenotypic variations due to natural and artificial selection. Hebao red carp (HB, Cyprinus carpio wuyuanensis), an indigenous strain in China, is renowned for its unique body morphology and reddish skin. To reveal the genetic basis underlying the distinct skin color of HB, we constructed an improved high-fidelity (HiFi) HB genome with good contiguity, completeness, and correctness. Genome structure comparison was conducted between HB and a representative wild strain, Yellow River carp (YR, C. carpio haematopterus), to identify structural variants and genes under positive selection. Signatures of artificial selection during domestication were identified in HB and YR populations, while phenotype mapping was performed in a segregating population generated by HB×YR crosses. Body color in HB was associated with regions with fixed mutations. The simultaneous mutation and superposition of a pair of homologous genes (mitfa) in chromosomes A06 and B06 conferred the reddish color in domesticated HB. Transcriptome analysis of common carp with different alleles of the mitfa mutation confirmed that gene duplication can buffer the deleterious effects of mutation in allotetraploids. This study provides new insights into genotype-phenotype associations in allotetraploid species and lays a foundation for future breeding of common carp.
  • All sequencing data generated in this study were deposited at the Sequence Read Archive (https://ncbi.nlm.nih.gov/sra) under BioProjectID PRJNA510861, PRJNA824207, PRJNA853462, and PRJNA853504, Genome Sequence Archive (GSA) database of the National Genomics Data Center (NGDC) under accession number CRA009294, and Science Data Bank (doi: 10.57760/sciencedb.j00139.00045).
    Supplementary data to this article can be found online.
  • loading
  • [1]
    Akagi T, Hanada T, Yaegaki H, et al. 2016. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 23(3): 271−282.
    [2]
    Alonge M, Wang XG, Benoit M, et al. 2020. Major impacts of widespread structural variation on gene expression and crop Improvement in tomato. Cell, 182(1): 145−161.e23. doi: 10.1016/j.cell.2020.05.021
    [3]
    Andersson L. 1997. The use of a wild pig×domestic pig intercross to map phenotypic trait loci. Journal of Heredity, 88(5): 380−383. doi: 10.1093/oxfordjournals.jhered.a023122
    [4]
    Bakos J, Gorda S. 1995. Genetic improvement of common carp strains using intraspecific hybridization. Aquaculture, 129(1–4): 183–186.
    [5]
    Balon EK. 2004. About the oldest domesticates among fishes. Journal of Fish Biology, 65(S1): 1−27. doi: 10.1111/j.0022-1112.2004.00563.x
    [6]
    Bertolotti AC, Layer RM, Gundappa MK, et al. 2020. The structural variation landscape in 492 Atlantic salmon genomes. Nature Communications, 11(1): 5176. doi: 10.1038/s41467-020-18972-x
    [7]
    Browning SR, Browning BL. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics, 81(5): 1084−1097. doi: 10.1086/521987
    [8]
    Carneiro M, Rubin CJ, Di Palma F, et al. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200): 1074−1079. doi: 10.1126/science.1253714
    [9]
    Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4): 540−552. doi: 10.1093/oxfordjournals.molbev.a026334
    [10]
    Chen D, Zhang Q, Tang WQ, et al. 2020. The evolutionary origin and domestication history of goldfish (Carassius auratus). Proceedings of the National Academy of Sciences of the United States of America, 117(47): 29775−29785. doi: 10.1073/pnas.2005545117
    [11]
    Chen YX, Chen YS, Shi CM, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 7(1): gix120.
    [12]
    Chen ZL, Omori Y, Koren S, et al. 2019. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Science Advances, 5(6): eaav0547. doi: 10.1126/sciadv.aav0547
    [13]
    Chiang C, Scott AJ, Davis JR, et al. 2017. The impact of structural variation on human gene expression. Nature Genetics, 49(5): 692−699. doi: 10.1038/ng.3834
    [14]
    Crow KD, Wagner GP. 2006. What is the role of genome duplication in the evolution of complexity and diversity?. Molecular Biology and Evolution, 23(5): 887−892. doi: 10.1093/molbev/msj083
    [15]
    Danecek P, Auton A, Abecasis G, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [16]
    Danecek P, Bonfield JK, Liddle J, et al. 2021. Twelve years of SAMtools and BCFtools. Gigascience, 10(2): giab008. doi: 10.1093/gigascience/giab008
    [17]
    Darriba D, Taboada GL, Doallo R, et al. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8): 1164−1165. doi: 10.1093/bioinformatics/btr088
    [18]
    Darwin C. 2010. The Variation of Animals and Plants Under Domestication. New York: Cambridge University Press.
    [19]
    David L, Blum S, Feldman MW, et al. 2003. Recent duplication of the common carp (Cyprinus carpio L. ) genome as revealed by analyses of microsatellite loci. Molecular Biology and Evolution, 20(9): 1425−1434. doi: 10.1093/molbev/msg173
    [20]
    Deng ZJ. 1981. Study on body shape formation and body color inheritance of Hebao red Carp in Wuyuan, Jiangxi province. Freshwater Fisheries, (6): 14,22. (in Chinese)
    [21]
    Du H, Zheng XR, Zhao QQ, et al. 2021. Analysis of structural variants reveal novel selective regions in the genome of Meishan pigs by whole genome sequencing. Frontiers in Genetics, 12: 550676. doi: 10.3389/fgene.2021.550676
    [22]
    Durand NC, Robinson JT, Shamim MS, et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems, 3(1): 99−101. doi: 10.1016/j.cels.2015.07.012
    [23]
    Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1): 238. doi: 10.1186/s13059-019-1832-y
    [24]
    Essa BH, Suzuki S, Nagano AJ, et al. 2021. QTL analysis for early growth in an intercross between native Japanese Nagoya and White Plymouth Rock chicken breeds using RAD sequencing-based SNP markers. Animal Genetics, 52(2): 232−236. doi: 10.1111/age.13039
    [25]
    Goel M, Sun HQ, Jiao WB, et al. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20(1): 277. doi: 10.1186/s13059-019-1911-0
    [26]
    Hartman ML, Czyz M. 2015. MITF in melanoma: mechanisms behind its expression and activity. Cellular and Molecular Life Sciences, 72(7): 1249−1260. doi: 10.1007/s00018-014-1791-0
    [27]
    Hu XS, Ge YL, Li CT, et al. 2018. Developments in common carp culture and selective breeding of new varieties. In: Gui JF, Tang QS, Li ZJ, Liu JS, De Silva SS. Aquaculture in China. Chichester: John Wiley & Sons Ltd, 125–148.
    [28]
    Hurst LD. 2002. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics, 18(9): 486−487. doi: 10.1016/S0168-9525(02)02722-1
    [29]
    Johnson SL, Nguyen AN, Lister JA. 2011. mitfa is required at multiple stages of melanocyte differentiation but not to establish the melanocyte stem cell. Developmental Biology, 350(2): 405−413. doi: 10.1016/j.ydbio.2010.12.004
    [30]
    Katoh K, Asimenos G, Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. In: Posada D. Bioinformatics for DNA Sequence Analysis. New York: Humana Press, 39–64.
    [31]
    Kim D, Paggi JM, Park C, et al. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8): 907−915. doi: 10.1038/s41587-019-0201-4
    [32]
    Kurtz S, Phillippy A, Delcher AL, et al. 2004. Versatile and open software for comparing large genomes. Genome Biology, 5(2): R12. doi: 10.1186/gb-2004-5-2-r12
    [33]
    Lexer C, Randell RA, Rieseberg LH. 2003. Experimental hybridization as a tool for studying selection in the wild. Ecology, 84(7): 1688−1699. doi: 10.1890/0012-9658(2003)084[1688:EHAATF]2.0.CO;2
    [34]
    Levy C, Khaled M, Fisher DE. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 12(9): 406−414. doi: 10.1016/j.molmed.2006.07.008
    [35]
    Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26(5): 589−595. doi: 10.1093/bioinformatics/btp698
    [36]
    López ME, Benestan L, Moore JS, et al. 2019. Comparing genomic signatures of domestication in two Atlantic salmon (Salmo salar L. ) populations with different geographical origins. Evolutionary Applications, 12(1): 137−156. doi: 10.1111/eva.12689
    [37]
    Lou YD, Sun JC. 2001. Progress on studies of origin and genetic diversity of three breeds of red carp in Jiangxi Province. Journal of Fisheries of China, 25(6): 570−575. (in Chinese)
    [38]
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [39]
    Lu SN, Wang JY, Chitsaz F, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
    [40]
    Ma W, Zhu ZH, Bi XY, et al. 2014. Allopolyploidization is not so simple: evidence from the origin of the Tribe Cyprinini (Teleostei: Cypriniformes). Current Molecular Medicine, 14(10): 1331−1338. doi: 10.2174/1566524014666141203101543
    [41]
    Ma YL, Zhang SX, Zhang KL, et al. 2018. Genomic analysis to identify signatures of artificial selection and loci associated with important economic traits in Duroc pigs. G3 Genes| Genomes| Genetics, 8(11): 3617−3625.
    [42]
    Mendel G. 1996. Experiments in plant hybridization (1865).
    [43]
    Milla S, Pasquet A, El Mohajer L, et al. 2021. How domestication alters fish phenotypes. Reviews in Aquaculture, 13(1): 388−405. doi: 10.1111/raq.12480
    [44]
    Nakajima T, Hudson MJ, Uchiyama J, et al. 2019. Common carp aquaculture in Neolithic China dates back 8, 000 years. Nature Ecology & Evolution, 3(10): 1415−1418.
    [45]
    Nam BH, Yoo D, Kim YO, et al. 2019. Whole genome sequencing reveals the impact of recent artificial selection on red sea bream reared in fish farms. Scientific Reports, 9(1): 6487. doi: 10.1038/s41598-019-42988-z
    [46]
    Orteu A, Jiggins CD. 2020. The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics, 21(8): 461−475. doi: 10.1038/s41576-020-0234-z
    [47]
    Pertea M, Kim D, Pertea GM, et al. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9): 1650−1667. doi: 10.1038/nprot.2016.095
    [48]
    Pertea M, Pertea GM, Antonescu CM, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290−295. doi: 10.1038/nbt.3122
    [49]
    Poplin R, Ruano-Rubio V, DePristo MA, et al. 2018. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv.
    [50]
    Price AL, Patterson NJ, Plenge RM, et al. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8): 904−909. doi: 10.1038/ng1847
    [51]
    Purcell S, Neale B, Todd-Brown K, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [52]
    Qin P, Lu HW, Du HL, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 184(13): 3542−3558.e16. doi: 10.1016/j.cell.2021.04.046
    [53]
    Qiu Q, Wang LZ, Wang K, et al. 2015. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Communications, 6: 10283. doi: 10.1038/ncomms10283
    [54]
    Robinson JT, Thorvaldsdóttir H, Winckler W, et al. 2011. Integrative genomics viewer. Nature Biotechnology, 29(1): 24−26. doi: 10.1038/nbt.1754
    [55]
    Ross-Ibarra J, Morrell PL, Gaut BS. 2007. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 104(S1): 8641−8648.
    [56]
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [57]
    Stern DL, Ding Y, Berrocal A, et al. 2017. Natural courtship song wariation caused by an intronic retroelement in an ion channel gene. Integrative and Comparative Biology, 57: E419−E419.
    [58]
    Tang HB, Bowers JE, Wang XY, et al. 2008. Synteny and collinearity in plant genomes. Science, 320(5875): 486−488. doi: 10.1126/science.1153917
    [59]
    Varagona MJ, Purugganan M, Wessler SR. 1992. Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. The Plant Cell, 4(7): 811−820.
    [60]
    Villanueva RAM, Chen ZJ. 2019. ggplot2: elegant graphics for data analysis (2nd ed. ). Measurement:Interdisciplinary Research and Perspectives, 17(3): 160−167. doi: 10.1080/15366367.2019.1565254
    [61]
    Vollger MR, Logsdon GA, Audano PA, et al. 2020. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Annals of Human Genetics, 84(2): 125−140. doi: 10.1111/ahg.12364
    [62]
    Wang K, Li MY, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16): e164. doi: 10.1093/nar/gkq603
    [63]
    Wenger AM, Peluso P, Rowell WJ, et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology, 37(10): 1155−1162. doi: 10.1038/s41587-019-0217-9
    [64]
    Xu CX, Li Q, Yu H, et al. 2019a. Inheritance of shell pigmentation in Pacific oyster Crassostrea gigas. Aquaculture, 512: 734249.
    [65]
    Xu P, Xu J, Liu GJ, et al. 2019b. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nature Communications, 10(1): 4625.
    [66]
    Xu P, Zhang XF, Wang XM, et al. 2014. Genome sequence and genetic diversity of the common carp. Cyprinus carpio. Nature Genetics, 46(11): 1212−1219. doi: 10.1038/ng.3098
    [67]
    Yin LL, Zhang HH, Tang ZS, et al. 2021. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19(4): 619−628.
    [68]
    Zhang JS, Pan GB. 1983. Body form and body colour in hybrids of Cyprinus carpio. Journal of Fisheries of China, 7(4): 301–312. (in Chinese)
    [69]
    Zhang Z. 2022. KaKs_calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genomics, Proteomics & Bioinformatics, 20(3): 536−540.
    [70]
    Zhang Z, Xiao JF, Wu JY, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications, 419(4): 779−781. doi: 10.1016/j.bbrc.2012.02.101
    [71]
    Zhou J, Wu Q, Wang Z, et al. 2004. Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L. ) in China using microsatellite markers. Russian Journal of Genetics, 40(10): 1144−1148. doi: 10.1023/B:RUGE.0000044758.51875.25
    [72]
    Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7): 821−824. doi: 10.1038/ng.2310
    [73]
    Zhou ZK, Li M, Cheng H, et al. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 9(1): 2648. doi: 10.1038/s41467-018-04868-4
  • ZR-2022-388-Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1677) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return