Citation: | Wen-Yo Tu, Wentao Xu, Jianmin Zhang, Shuyuan Qi, Lei Bai, Chengyong Shen, Kejing Zhang. C9orf72 poly-GA proteins impair neuromuscular transmission. Zoological Research, 2023, 44(2): 331-340. doi: 10.24272/j.issn.2095-8137.2022.356 |
[1] |
Arimura S, Okada T, Tezuka T, et al. 2014. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science, 345(6203): 1505−1508. doi: 10.1126/science.1250744
|
[2] |
Bai L, Tu WY, Xiao YT, et al. 2022. Motoneurons innervation determines the distinct gene expressions in multinucleated myofibers. Cell & Bioscience, 12(1): 140.
|
[3] |
Bentzinger CF, Barzaghi P, Lin S, et al. 2005. Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-α2-deficient mice. The FASEB Journal, 19(8): 934−942. doi: 10.1096/fj.04-3376com
|
[4] |
Bertrand A, Wen J, Rinaldi D, et al. 2018. Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 Carriers younger than 40 years. JAMA Neurology, 75(2): 236−245. doi: 10.1001/jamaneurol.2017.4266
|
[5] |
Bezakova G, Ruegg MA. 2003. New insights into the roles of agrin. Nature Reviews Molecular Cell Biology, 4(4): 295−309. doi: 10.1038/nrm1074
|
[6] |
Brahic M, Bousset L, Bieri G, et al. 2016. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathologica, 131(4): 539−548. doi: 10.1007/s00401-016-1538-0
|
[7] |
Burden SJ, Yumoto N, Zhang W. 2013. The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harbor Perspectives in Biology, 5(5): a009167.
|
[8] |
Chand KK, Lee KM, Lee JD, et al. 2018. Defects in synaptic transmission at the neuromuscular junction precede motor deficits in a TDP-43Q331K transgenic mouse model of amyotrophic lateral sclerosis. The FASEB Journal, 32(5): 2676−2689. doi: 10.1096/fj.201700835R
|
[9] |
Chang YJ, Jeng US, Chiang YL, et al. 2016. The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. Journal of Biological Chemistry, 291(10): 4903−4911. doi: 10.1074/jbc.M115.694273
|
[10] |
Chen AZ, Bai L, Zhong KK, et al. 2020. APC2CDH1 negatively regulates agrin signaling by promoting the ubiquitination and proteolytic degradation of DOK7. The FASEB Journal, 34(9): 12009−12023. doi: 10.1096/fj.202000485R
|
[11] |
Cleary JD, Ranum LPW. 2017. New developments in RAN translation: insights from multiple diseases. Current Opinion in Genetics & Development, 44: 125−134.
|
[12] |
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2): 245−256. doi: 10.1016/j.neuron.2011.09.011
|
[13] |
Flores BN, Dulchavsky ME, Krans A, et al. 2016. Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PLoS One, 11(10): e0165084. doi: 10.1371/journal.pone.0165084
|
[14] |
Freibaum BD, Lu YB, Lopez-Gonzalez R, et al. 2015. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature, 525(7567): 129−133. doi: 10.1038/nature14974
|
[15] |
Gao FB, Almeida S, Lopez-Gonzalez R. 2017a. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. The EMBO Journal, 36(20): 2931−2950. doi: 10.15252/embj.201797568
|
[16] |
Gao FB, Richter JD, Cleveland DW. 2017b. Rethinking unconventional translation in neurodegeneration. Cell, 171(5): 994−1000. doi: 10.1016/j.cell.2017.10.042
|
[17] |
Geevasinga N, Menon P, Özdinler PH, et al. 2016. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nature Reviews Neurology, 12(11): 651−661. doi: 10.1038/nrneurol.2016.140
|
[18] |
Gendron TF, Chew J, Stankowski JN, et al. 2017. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Science Translational Medicine, 9(383): eaai7866. doi: 10.1126/scitranslmed.aai7866
|
[19] |
Gendron TF, van Blitterswijk M, Bieniek KF, et al. 2015. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathologica, 130(4): 559−573. doi: 10.1007/s00401-015-1474-4
|
[20] |
Gilhus NE, Skeie GO, Romi F, et al. 2016. Myasthenia gravis - autoantibody characteristics and their implications for therapy. Nature Reviews Neurology, 12(5): 259−268. doi: 10.1038/nrneurol.2016.44
|
[21] |
Haeusler AR, Donnelly CJ, Rothstein JD. 2016. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nature Reviews Neuroscience, 17(6): 383−395. doi: 10.1038/nrn.2016.38
|
[22] |
Herranz-Martin S, Chandran J, Lewis K, et al. 2017. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits. Disease Models & Mechanisms, 10(7): 859−868.
|
[23] |
Hettwer S, Lin S, Kucsera S, et al. 2014. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLoS One, 9(2): e88739. doi: 10.1371/journal.pone.0088739
|
[24] |
Jensen BK, Schuldi MH, McAvoy K, et al. 2020. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Molecular Medicine, 12(5): e10722.
|
[25] |
Kim N, Stiegler AL, Cameron TO, et al. 2008. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell, 135(2): 334−342. doi: 10.1016/j.cell.2008.10.002
|
[26] |
Krishnan G, Raitcheva D, Bartlett D, et al. 2022. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nature Communications, 13(1): 2799. doi: 10.1038/s41467-022-30387-4
|
[27] |
Lee YB, Baskaran P, Gomez-Deza J, et al. 2017. C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity. Human Molecular Genetics, 26(24): 4765−4777. doi: 10.1093/hmg/ddx350
|
[28] |
Li L, Xiong WC, Mei L. 2018. Neuromuscular junction formation, aging, and disorders. Annual Review of Physiology, 80: 159−188. doi: 10.1146/annurev-physiol-022516-034255
|
[29] |
Li WY, Wang Y, Zhai FG, et al. 2017. AAV-KLF7 promotes descending propriospinal neuron axonal plasticity after spinal cord injury. Neural Plasticity, 2017: 1621629.
|
[30] |
Liu YJ, Pattamatta A, Zu T, et al. 2016. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron, 90(3): 521−534. doi: 10.1016/j.neuron.2016.04.005
|
[31] |
Mackenzie IR, Arzberger T, Kremmer E, et al. 2013. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathologica, 126(6): 859−879. doi: 10.1007/s00401-013-1181-y
|
[32] |
May S, Hornburg D, Schludi MH, et al. 2014. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathologica, 128(4): 485−503. doi: 10.1007/s00401-014-1329-4
|
[33] |
Miyoshi S, Tezuka T, Arimura S, et al. 2017. DOK7 gene therapy enhances motor activity and life span in ALS model mice. EMBO Molecular Medicine, 9(7): 880−889. doi: 10.15252/emmm.201607298
|
[34] |
Moloney EB, De Winter F, Verhaagen J. 2014. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Frontiers in Neuroscience, 8: 252.
|
[35] |
Moretto E, Stuart S, Surana S, et al. 2022. The role of extracellular matrix components in the spreading of pathological protein aggregates. Frontiers in Cellular Neuroscience, 16: 844211. doi: 10.3389/fncel.2022.844211
|
[36] |
Mori K, Weng SM, Arzberger T, et al. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science, 339(6125): 1335−1338. doi: 10.1126/science.1232927
|
[37] |
Nguyen L, Montrasio F, Pattamatta A, et al. 2020. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model. Neuron, 105(4): 645−662.e11. doi: 10.1016/j.neuron.2019.11.007
|
[38] |
Ohno K, Ohkawara B, Ito M. 2017. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opinion on Therapeutic Targets, 21(10): 949−958. doi: 10.1080/14728222.2017.1369960
|
[39] |
O'Rourke JG, Bogdanik L, Yáñez A, et al. 2016. C9orf72 is required for proper macrophage and microglial function in mice. Science, 351(6279): 1324−1329. doi: 10.1126/science.aaf1064
|
[40] |
Pérez-García MJ, Burden SJ. 2012. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Reports, 2(3): 497−502. doi: 10.1016/j.celrep.2012.08.004
|
[41] |
Renton AE, Majounie E, Waite A, et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2): 257−268. doi: 10.1016/j.neuron.2011.09.010
|
[42] |
Rivner MH, Liu SY, Quarles B, et al. 2017. Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle & Nerve, 55(3): 430−432.
|
[43] |
Rodriguez Cruz PM, Palace J, Beeson D. 2014. Congenital myasthenic syndromes and the neuromuscular junction. Current Opinion in Neurology, 27(5): 566−575. doi: 10.1097/WCO.0000000000000134
|
[44] |
Saberi S, Stauffer JE, Jiang J, et al. 2018. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathologica, 135(3): 459−474. doi: 10.1007/s00401-017-1793-8
|
[45] |
Schludi MH, Becker L, Garrett L, et al. 2017. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathologica, 134(2): 241−254. doi: 10.1007/s00401-017-1711-0
|
[46] |
Schludi MH, May S, Grässer FA, et al. 2015. Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathologica, 130(4): 537−555. doi: 10.1007/s00401-015-1450-z
|
[47] |
Shen CY, Chen YF, Liu HQ, et al. 2008. Hydrogen peroxide promotes Aβ production through JNK-dependent activation of γ-secretase. Journal of Biological Chemistry, 283(25): 17721−17730. doi: 10.1074/jbc.M800013200
|
[48] |
Shen CY, Li L, Zhao K, et al. 2018. Motoneuron Wnts regulate neuromuscular junction development. eLife, 7: e34625. doi: 10.7554/eLife.34625
|
[49] |
Shen CY, Lu YS, Zhang B, et al. 2013. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. The Journal of Clinical Investigation, 123(12): 5190−5202. doi: 10.1172/JCI66039
|
[50] |
Shen CY, Xiong WC, Mei L. 2015. LRP4 in neuromuscular junction and bone development and diseases. Bone, 80: 101−108. doi: 10.1016/j.bone.2015.05.012
|
[51] |
Taylor JP, Brown RH Jr, Cleveland DW. 2016. Decoding ALS: from genes to mechanism. Nature, 539(7628): 197−206. doi: 10.1038/nature20413
|
[52] |
Tu WY, Xu WT, Zhang KJ, et al. 2021. Whole-mount staining of neuromuscular junctions in adult mouse diaphragms with a sandwich-like apparatus. Journal of Neuroscience Methods, 350: 109016. doi: 10.1016/j.jneumeth.2020.109016
|
[53] |
Tzartos JS, Zisimopoulou P, Rentzos M, et al. 2014. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Annals of Clinical and Translational Neurology, 1(2): 80−87. doi: 10.1002/acn3.26
|
[54] |
Westergard T, Jensen BK, Wen XM, et al. 2016. Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Reports, 17(3): 645−652. doi: 10.1016/j.celrep.2016.09.032
|
[55] |
Wu HT, Xiong WC, Mei L. 2010. To build a synapse: signaling pathways in neuromuscular junction assembly. Development, 137(7): 1017−1033. doi: 10.1242/dev.038711
|
[56] |
Xiao YT, Zhang JM, Shu XQ, et al. 2020. Loss of mitochondrial protein CHCHD10 in skeletal muscle causes neuromuscular junction impairment. Human Molecular Genetics, 29(11): 1784−1796. doi: 10.1093/hmg/ddz154
|
[57] |
Yamakawa M, Ito D, Honda T,et al. 2015. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human Molecular Genetics, 24(6): 1630−1645. doi: 10.1093/hmg/ddu576
|
[58] |
Zhang B, Luo SW, Wang Q, et al. 2008. LRP4 serves as a coreceptor of agrin. Neuron, 60(2): 285−297. doi: 10.1016/j.neuron.2008.10.006
|
[59] |
Zhang B, Shen CY, Bealmear B, et al. 2014. Autoantibodies to agrin in myasthenia gravis patients. PLoS One, 9(3): e91816. doi: 10.1371/journal.pone.0091816
|
[60] |
Zhang K, Donnelly CJ, Haeusler AR, et al. 2015. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 525(7567): 56−61. doi: 10.1038/nature14973
|
[61] |
Zhang KJ, Wang AL, Zhong KK, et al. 2021. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron, 109(12): 1949−1962.e6. doi: 10.1016/j.neuron.2021.04.023
|
[62] |
Zhang YJ, Gendron TF, Grima JC, et al. 2016. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 19(5): 668−677. doi: 10.1038/nn.4272
|
[63] |
Zhao K, Shen CY, Lu YS, et al. 2017. Muscle yap is a regulator of neuromuscular junction formation and regeneration. Journal of Neuroscience, 37(13): 3465−3477. doi: 10.1523/JNEUROSCI.2934-16.2017
|
[64] |
Zhou J, Li J, Rosenbaum DM, et al. 2017a. The prolyl 4-hydroxylase inhibitor GSK360A decreases post-stroke brain injury and sensory, motor, and cognitive behavioral deficits. PLoS One, 12(9): e0184049. doi: 10.1371/journal.pone.0184049
|
[65] |
Zhou QH, Lehmer C, Michaelsen M, et al. 2017b. Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Molecular Medicine, 9(5): 687−702. doi: 10.15252/emmm.201607054
|
[66] |
Zu T, Gibbens B, Doty NS, et al. 2011. Non-ATG-initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the United States of America, 108(1): 260−265.
|
![]() |
![]() |