Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Yi-Tao Lin, Ting Xu, Jack Chi-Ho Ip, Yanan Sun, Ling Fang, Tiangang Luan, Yu Zhang, Pei-Yuan Qian, Jian-Wen Qiu. Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis. Zoological Research, 2023, 44(1): 106-125. doi: 10.24272/j.issn.2095-8137.2022.279
Citation: Yi-Tao Lin, Ting Xu, Jack Chi-Ho Ip, Yanan Sun, Ling Fang, Tiangang Luan, Yu Zhang, Pei-Yuan Qian, Jian-Wen Qiu. Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis. Zoological Research, 2023, 44(1): 106-125. doi: 10.24272/j.issn.2095-8137.2022.279

Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis

doi: 10.24272/j.issn.2095-8137.2022.279
All raw sequencing data for the metagenomes, metatranscriptomes, and symbiont genomes were deposited in the National Center for Biotechnology Information Sequence Read Archive (NCBI: PRJNA785362), National Genomics Data Center (GSA: PRJCA012895), and Science Data Bank (CSTR: 31253.11.sciencedb.06106). The mass spectrometry proteomics data were deposited in the ProteomeXchange (PRIDE identifier: PXD03067). The metagenome assemblies and annotations were deposited in Figshare DOI: 10.6084/m9.figshare.17693405.
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
J.W.Q., P.Y.Q., and Y.Z. designed the project. Y.T.L. and T.X. collected the samples. T.X. performed the DNA and RNA extraction. Y.T.L., T.X., J.C.H.I., and Y.S. conducted sequencing, assembly, and annotation of the metagenome and metatranscriptome. Y.T.L. extracted the proteins. L.F. and T.L. conducted the LC-MS/MS. Y.T.L., T.X., and J.C.-H.I. analyzed the proteome. Y.T.L., T.X., J.C.H.I., Y.Z., and J.W.Q. drafted the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This study was supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0409, SMSEGL20SC02), Research Grants Council of Hong Kong (12101021), and Guangdong Natural Science Foundation (2020A1515011117)
More Information
  • Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel (Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
  • All raw sequencing data for the metagenomes, metatranscriptomes, and symbiont genomes were deposited in the National Center for Biotechnology Information Sequence Read Archive (NCBI: PRJNA785362), National Genomics Data Center (GSA: PRJCA012895), and Science Data Bank (CSTR: 31253.11.sciencedb.06106). The mass spectrometry proteomics data were deposited in the ProteomeXchange (PRIDE identifier: PXD03067). The metagenome assemblies and annotations were deposited in Figshare DOI: 10.6084/m9.figshare.17693405.
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    J.W.Q., P.Y.Q., and Y.Z. designed the project. Y.T.L. and T.X. collected the samples. T.X. performed the DNA and RNA extraction. Y.T.L., T.X., J.C.H.I., and Y.S. conducted sequencing, assembly, and annotation of the metagenome and metatranscriptome. Y.T.L. extracted the proteins. L.F. and T.L. conducted the LC-MS/MS. Y.T.L., T.X., and J.C.-H.I. analyzed the proteome. Y.T.L., T.X., J.C.H.I., Y.Z., and J.W.Q. drafted the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, et al. 2019. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nature Microbiology, 4(12): 2487−2497. doi: 10.1038/s41564-019-0572-9
    [2]
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. 2020. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 36(7): 2251−2252. doi: 10.1093/bioinformatics/btz859
    [3]
    Assié A, Borowski C, Van Der Heijden K, Raggi L, Geier B, Leisch N, et al. 2016. A specific and widespread association between deep-sea Bathymodiolus mussels and a novel family of Epsilonproteobacteria. Environmental Microbiology Reports, 8(5): 805−813. doi: 10.1111/1758-2229.12442
    [4]
    Assié A, Leisch N, Meier DV, Gruber-Vodicka H, Tegetmeyer HE, Meyerdierks A, et al. 2020. Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). The ISME Journal, 14(1): 104−122. doi: 10.1038/s41396-019-0508-7
    [5]
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455−477. doi: 10.1089/cmb.2012.0021
    [6]
    Bettencourt R, Rodrigues M, Barros I, Cerqueira T, Freitas C, Costa V, et al. 2014. Site-related differences in gene expression and bacterial densities in the mussel Bathymodiolus azoricus from the Menez Gwen and Lucky Strike deep-sea hydrothermal vent sites. Fish & Shellfish Immunology, 39(2): 343−353.
    [7]
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [8]
    Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1): 59−60. doi: 10.1038/nmeth.3176
    [9]
    Bunet R, Prévot JM, Vicente N, García-March JR, Martinović R, Tena-Medialdea J, et al. 2019. Genome description and inventory of immune-related genes of the endangered pen shell Pinna nobilis: a giant bivalve experiencing a mass mortality event. Research Square: 1−40. doi: 10.21203/rs.2.15332/v1.
    [10]
    Byeon JH, Seo ES, Lee JB, Lee MJ, Kim JK, Yoo JW, et al. 2015. A specific cathepsin-L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria. Developmental & Comparative Immunology, 53(1): 79−84.
    [11]
    Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248−254. doi: 10.1016/0003-2697(76)90527-3
    [12]
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10: 421. doi: 10.1186/1471-2105-10-421
    [13]
    Cambon-Bonavita MA, Aubé J, Cueff-Gauchard V, Reveillaud J. 2021. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria. Microbiome, 9(1): 87.
    [14]
    Campbell BJ, Engel AS, Porter ML, Takai K. 2006. The versatile ε-proteobacteria: key players in sulphidic habitats. Nature Reviews Microbiology, 4(6): 458−468. doi: 10.1038/nrmicro1414
    [15]
    Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, 325(6102): 346−348. doi: 10.1038/325346a0
    [16]
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB–Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6): 1925−1927.
    [17]
    Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [18]
    Chen H, Wang MX, Zhang H, Wang H, Zhou L, Zhong ZS, et al. 2021. MicroRNAs facilitate comprehensive responses of Bathymodiolinae mussel against symbiotic and nonsymbiotic bacteria stimulation. Fish & Shellfish Immunology, 119: 420−431.
    [19]
    Cheng J, Hui M, Sha ZL. 2019. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps. BMC Genomics, 20(1): 388. doi: 10.1186/s12864-019-5753-7
    [20]
    Childress JJ, Fisher CR, Brooks JM, Kennicutt MC, Bidigare R, Anderson AE. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, 233(4770): 1306−1308. doi: 10.1126/science.233.4770.1306
    [21]
    DeChaine EG, Cavanaugh CM. 2006. Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae). In: Overmann J. Molecular Basis of Symbiosis. Berlin: Springer, 227–249.
    [22]
    Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, et al. 2014. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics, 15(1): 924. doi: 10.1186/1471-2164-15-924
    [23]
    Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10): 725−740. doi: 10.1038/nrmicro1992
    [24]
    Duperron S, Halary S, Lorion J, Sibuet M, Gaill F. 2008. Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environmental Microbiology, 10(2): 433−445. doi: 10.1111/j.1462-2920.2007.01465.x
    [25]
    Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1): 238. doi: 10.1186/s13059-019-1832-y
    [26]
    Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Applied and Environmental Microbiology, 67(7): 2873−2882. doi: 10.1128/AEM.67.7.2873-2882.2001
    [27]
    Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. 2012. CD-HIT: accelerated for clustering the next–generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    [28]
    Gardebrecht A, Markert S, Sievert SM, Felbeck H, Thürmer A, Albrecht D, et al. 2012. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal, 6(4): 766−776. doi: 10.1038/ismej.2011.137
    [29]
    Ghosh W, Mallick S, DasGupta SK. 2009. Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Research in Microbiology, 160(6): 409−420. doi: 10.1016/j.resmic.2009.07.003
    [30]
    Goffredi SK. 2010. Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates. Environmental Microbiology Reports, 2(4): 479−488. doi: 10.1111/j.1758-2229.2010.00136.x
    [31]
    Gourdine JP, Smith-Ravin EJ. 2007. Analysis of a cDNA-derived sequence of a novel mannose-binding lectin, codakine, from the tropical clam Codakia orbicularis. Fish & Shellfish Immunology, 22(5): 498–509.
    [32]
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644−652. doi: 10.1038/nbt.1883
    [33]
    Graça ELM. 2015. Immune responses in Bathymodiolus azoricus upon Vibrio challenges: approaches to characterize mussel survival strategies and physiological adaptations in deep sea extreme environments. PhD thesis, University of the Azores.
    [34]
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8(8): 1494–1512.
    [35]
    Hongo Y, Ikuta T, Takaki Y, Shimamura S, Shigenobu S, Maruyama T, et al. 2016. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria. Gene, 585(2): 228−240. doi: 10.1016/j.gene.2016.03.033
    [36]
    Hongo Y, Nakamura Y, Shimamura S, Takaki Y, Uematsu K, Toyofuku T, et al. 2013. Exclusive localization of carbonic anhydrase in bacteriocytes of the deep-sea clam Calyptogena okutanii with thioautotrophic symbiotic bacteria. Journal of Experimental Biology, 216(Pt 23): 4403–4414.
    [37]
    Hou JL, Sievert SM, Wang YZ, Seewald JS, Natarajan VP, Wang FP, et al. 2020. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome, 8(1): 102. doi: 10.1186/s40168-020-00851-8
    [38]
    Huang XQ, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Research, 9(9): 868−877. doi: 10.1101/gr.9.9.868
    [39]
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. 2019. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1): D309−D314. doi: 10.1093/nar/gky1085
    [40]
    Hügler M, Sievert SM. 2011. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 3: 261−289. doi: 10.1146/annurev-marine-120709-142712
    [41]
    Hulstaert N, Shofstahl J, Sachsenberg T, Walzer M, Barsnes H, Martens L, et al. 2020. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. Journal of Proteome Research, 19(1): 537−542. doi: 10.1021/acs.jproteome.9b00328
    [42]
    Ikuta T, Tame A, Saito M, Aoki Y, Nagai Y, Sugimura M, et al. 2019. Identification of cells expressing two peptidoglycan recognition proteins in the gill of the vent mussel. Bathymodiolus septemdierum. Fish & Shellfish Immunology, 93: 815−822.
    [43]
    Ip JCH, Xu T, Sun J, Li RS, Chen C, Lan Y, et al. 2021. Host-endosymbiont genome integration in a deep-sea chemosymbiotic clam. Molecular Biology and Evolution, 38(2): 502−518. doi: 10.1093/molbev/msaa241
    [44]
    Jan C, Petersen JM, Werner J, Teeling H, Huang SX, Glöckner FO, et al. 2014. The gill chamber epibiosis of deep-sea shrimp Rimicaris exoculata: an in-depth metagenomic investigation and discovery of Zetaproteobacteria. Environmental Microbiology, 16(9): 2723−2738. doi: 10.1111/1462-2920.12406
    [45]
    Jiang S, Li H, Zhang DX, Zhang H, Wang LL, Sun JS, et al. 2015. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS. Fish & Shellfish Immunology, 45(2): 583−591.
    [46]
    Jing HM, Wang RN, Jiang QY, Zhang Y, Peng XT. 2020. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps. Science of The Total Environment, 748: 142459. doi: 10.1016/j.scitotenv.2020.142459
    [47]
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587−589. doi: 10.1038/nmeth.4285
    [48]
    Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology, 428(4): 726−731. doi: 10.1016/j.jmb.2015.11.006
    [49]
    Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [50]
    Kamennaya NA, Ahn S, Park H, Bartal R, Sasaki KA, Holman HY, et al. 2015. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production. Metabolic Engineering, 29: 76−85. doi: 10.1016/j.ymben.2015.03.002
    [51]
    Kendall JJ, Barrero-Tobon AM, Hendrixson DR, Kelly DJ. 2014. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environmental Microbiology, 16(4): 1105−1121. doi: 10.1111/1462-2920.12341
    [52]
    Laming SR, Gaudron SM, Duperron S. 2018. Lifecycle ecology of deep-sea chemosymbiotic mussels: a review. Frontiers in Marine Science, 5: 282. doi: 10.3389/fmars.2018.00282
    [53]
    Lan Y, Sun J, Chen C, Sun YN, Zhou YD, Yang Y, et al. 2021. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nature Communications, 12(1): 1165.
    [54]
    Le Bris N, Arnaud-Haond S, Beaulieu S, Cordes E, Hilario A, Rogers A, et al. 2016. Hydrothermal vents and cold seeps. In: United Nations. The First Global Integrated Marine Assessment: World Ocean Assessment I. Cambridge: Cambridge University Press, 853–862.
    [55]
    Levin LA. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: Gibson RN, Atkinson RJA, Gordon JDM. Oceanography and Marine Biology. Boca Raton: CRC Press, 1–46.
    [56]
    Li MN, Chen H, Wang MX, Zhong ZS, Wang H, Zhou L, et al. 2021. A Toll-like receptor identified in Gigantidas platifrons and its potential role in the immune recognition of endosymbiotic methane oxidation bacteria. PeerJ, 9: e11282. doi: 10.7717/peerj.11282
    [57]
    Li MN, Chen H, Wang MX, Zhong ZS, Zhou L, Li CL. 2020. Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels Gigantidas platifrons. Journal of Oceanology and Limnology, 38(4): 1292–1303.
    [58]
    Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. 2019. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. The ISME Journal, 13(4): 902−920. doi: 10.1038/s41396-018-0318-3
    [59]
    Lin GM, Lu JG, Sun ZL, Xie JG, Huang JR, Su M, et al. 2021. Characterization of tissue-associated bacterial community of two Bathymodiolus species from the adjacent cold seep and hydrothermal vent environments. Science of the Total Environment, 796: 149046. doi: 10.1016/j.scitotenv.2021.149046
    [60]
    Lin XJ, Wakeham SG, Putnam IF, Astor YM, Scranton MI, Chistoserdov AY, et al. 2006. Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Applied and Environmental Microbiology, 72(4): 2679−2690. doi: 10.1128/AEM.72.4.2679-2690.2006
    [61]
    Liu XL, Ye S, Cheng CY, Li HW, Lu B, Yang WJ, et al. 2019. Identification and characterization of a symbiotic agglutination-related C-type lectin from the hydrothermal vent shrimp Rimicaris exoculata. Fish & Shellfish Immunology, 92: 1–10.
    [62]
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [63]
    Markovich D, Murer H. 2004. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflügers Archiv, 447(5): 594−602.
    [64]
    Meyer B, Imhoff JF, Kuever J. 2007. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 9(12): 2957−2977. doi: 10.1111/j.1462-2920.2007.01407.x
    [65]
    Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35(S2): W182−W185.
    [66]
    Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, et al. 2007. The Calyptogena magnifica chemoautotrophic symbiont genome. Science, 315(5814): 998−1000. doi: 10.1126/science.1138438
    [67]
    Osman EO, Weinnig AM. 2022. Microbiomes and obligate symbiosis of deep-sea animals. Annual Review of Animal Biosciences, 10: 151−176. doi: 10.1146/annurev-animal-081621-112021
    [68]
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7): 1043−1055. doi: 10.1101/gr.186072.114
    [69]
    Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14(4): 417−419. doi: 10.1038/nmeth.4197
    [70]
    Pinto JT, Zempleni J. 2016. Riboflavin. Advances in Nutrition, 7(5): 973−975. doi: 10.3945/an.116.012716
    [71]
    Ponnudurai R, Heiden SE, Sayavedra L, Hinzke T, Kleiner M, Hentschker C, et al. 2020. Comparative proteomics of related symbiotic mussel species reveals high variability of host-symbiont interactions. The ISME Journal, 14(2): 649−656. doi: 10.1038/s41396-019-0517-6
    [72]
    Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, et al. 2017a. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. The ISME Journal, 11(2): 463−477. doi: 10.1038/ismej.2016.124
    [73]
    Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, et al. 2017b. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards in Genomic Sciences, 12(1): 50. doi: 10.1186/s40793-017-0266-y
    [74]
    Ponsard J, Cambon-Bonavita MA, Zbinden M, Lepoint G, Joassin A, Corbari L, et al. 2013. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata. The ISME Journal, 7(1): 96–109.
    [75]
    Roeselers G, Newton ILG. 2012. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Applied Microbiology and Biotechnology, 94(1): 1−10. doi: 10.1007/s00253-011-3819-9
    [76]
    Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14): 2068−2069. doi: 10.1093/bioinformatics/btu153
    [77]
    Sen A, Åström EKL, Hong WL, Portnov A, Waage M, Serov P, et al. 2018. Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep. Biogeosciences, 15(14): 4533−4559. doi: 10.5194/bg-15-4533-2018
    [78]
    Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3210−3212. doi: 10.1093/bioinformatics/btv351
    [79]
    Stewart CN Jr, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 14(5): 748−750.
    [80]
    Stewart FJ, Dmytrenko O, Delong EF, Cavanaugh CM. 2011. Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum. Frontiers in Microbiology, 2: 134.
    [81]
    Sun J, Zhang Y, Xu T, Zhang Y, Mu HW, Zhang YJ, et al. 2017. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology & Evolution, 1(5): 0121.
    [82]
    Sun Y, Wang MX, Zhong ZS, Chen H, Wang H, Zhou L, et al. 2022. Adaption to hydrogen sulfide-rich environments: Strategies for active detoxification in deep-sea symbiotic mussels. Gigantidas platifrons. Science of the Total Environment, 804: 150054. doi: 10.1016/j.scitotenv.2021.150054
    [83]
    Sun YN, Sun J, Yang Y, Lan Y, Ip JCH, Wong WC, et al. 2021. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica. Molecular Biology and Evolution, 38(10): 4116–4134.
    [84]
    Supuran CT. 2018. Carbonic anhydrase activators. Future Medicinal Chemistry, 10(5): 561−573. doi: 10.4155/fmc-2017-0223
    [85]
    Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY. 2013. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiology Ecology, 84(2): 280−289. doi: 10.1111/1574-6941.12056
    [86]
    Tunnicliffe V. 1991. The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology, 29: 319−407.
    [87]
    Tyanova S, Temu T, Cox J. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11(12): 2301−2319. doi: 10.1038/nprot.2016.136
    [88]
    Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP-a flexible pipeline for genome–resolved metagenomic data analysis. Microbiome, 6(1): 158. doi: 10.1186/s40168-018-0541-1
    [89]
    Van Dover CL. 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton: Princeton University Press, 424.
    [90]
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. 2018. Addendum: comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov. ). Frontiers in Microbiology, 9: 772. doi: 10.3389/fmicb.2018.00772
    [91]
    Wang H, Zhang H, Wang MX, Chen H, Lian C, Li CL. 2019. Comparative transcriptomic analysis illuminates the host-symbiont interactions in the deep-sea mussel Bathymodiolus platifrons. Deep Sea Research Part I: Oceanographic Research Papers, 151: 103082.
    [92]
    Wang H, Zhang H, Zhong ZS, Sun Y, Wang MX, Chen H, et al. 2021. Molecular analyses of the gill symbiosis of the bathymodiolin mussel Gigantidas platifrons. iScience, 24(1): 101894.
    [93]
    Wang MS, Ruan RX. 2020. Genome-wide identification and functional analysis of the horizontally transferred genes in Penicillium. Genomics, 112(6): 5037–5043.
    [94]
    Wong YH, Sun J, He LS, Chen LG, Qiu JW, Qian PY. 2015. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5: 16597.
    [95]
    Wu ST, Zhu ZW, Fu LM, Niu BF, Li WZ. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics, 12: 444. doi: 10.1186/1471-2164-12-444
    [96]
    Xia YZ, Lü CJ, Hou NK, Xin YF, Liu JH, Liu HL, et al. 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. The ISME Journal, 11(12): 2754−2766. doi: 10.1038/ismej.2017.125
    [97]
    Xu T, Feng D, Tao J, Qiu JW. 2019. A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: Morphology, phylogenetic position, and gill-associated microbes. Deep Sea Research Part I:Oceanographic Research Papers, 146: 79−90. doi: 10.1016/j.dsr.2019.03.001
    [98]
    Yamamoto M, Takai K. 2011. Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Frontiers in Microbiology, 2: 192.
    [99]
    Yu JJ, Wang MX, Liu BZ, Yue X, Li CL. 2019. Gill symbionts of the cold-seep mussel Bathymodiolus platifrons: composition, environmental dependency and immune control. Fish & Shellfish Immunology, 86: 246−252.
    [100]
    Zhang X, Ning ZB, Mayne J, Moore JI, Li J, Butcher J, et al. 2016. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome, 4(1): 31. doi: 10.1186/s40168-016-0176-z
    [101]
    Zheng P, Wang MX, Li CL, Sun XQ, Wang XC, Sun Y, et al. 2017. Insights into deep-sea adaptations and host-symbiont interactions: A comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Molecular Ecology, 26(19): 5133−5148. doi: 10.1111/mec.14160
    [102]
    Zwirglmaier K, Reid WDK, Heywood J, Sweeting CJ, Wigham BD, Polunin NVC, et al. 2015. Linking regional variation of epibiotic bacterial diversity and trophic ecology in a new species of Kiwaidae (Decapoda, Anomura) from East Scotia Ridge (Antarctica) hydrothermal vents. MicrobiologyOpen, 4(1): 136−150. doi: 10.1002/mbo3.227
  • ZR-2022-279-Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2020) PDF downloads(345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return