Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Hojjat Asadollahpour Nanaei, Yudong Cai, Akil Alshawi, Jiayue Wen, Tanveer Hussain, Wei-Wei Fu, Nai-Yi Xu, Abdulameer Essa, Johannes A. Lenstra, Xihong Wang, Yu Jiang. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zoological Research, 2023, 44(1): 20-29. doi: 10.24272/j.issn.2095-8137.2022.242
Citation: Hojjat Asadollahpour Nanaei, Yudong Cai, Akil Alshawi, Jiayue Wen, Tanveer Hussain, Wei-Wei Fu, Nai-Yi Xu, Abdulameer Essa, Johannes A. Lenstra, Xihong Wang, Yu Jiang. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zoological Research, 2023, 44(1): 20-29. doi: 10.24272/j.issn.2095-8137.2022.242

Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate

doi: 10.24272/j.issn.2095-8137.2022.242
Raw sequencing data that support the findings of this study have been deposited in the NCBI database (BioProjectID PRJNA801057). Furthermore, whole-genome sequencing data have been submitted to the Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa) and Science Data Bank (https://www.scidb.cn/en) under accession No. CRA007867 and 10. 57760/sciencedb.j00139.00032, respectively.
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
Y.J. and X.W. led the project and designed and conceived the study. H.A.N., Y. C., and J.Y.W. performed the data analysis. A.A., T.H., and A.E. collected the local goat samples. A.A. provided critical information about Iraqi goats. H.A.N. prepared the first draft of the manuscript. Y.J., X.W., J.A.L., W.W.F., and N.Y.X. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (32050410304, 32002140, 31822052, 91431572381) and National Thousand Youth Talents Plan to Y.J.
More Information
  • Understanding how evolutionary pressures related to climate change have shaped the current genetic background of domestic animals is a fundamental pursuit of biology. Here, we generated whole-genome sequencing data from native goat populations in Iraq and Pakistan. Combined with previously published data on modern, ancient (Late Neolithic to Medieval periods), and wild Capra species worldwide, we explored the genetic population structure, ancestry components, and signatures of natural positive selection in native goat populations in Southwest Asia (SWA). Results revealed that the genetic structure of SWA goats was deeply influenced by gene flow from the eastern Mediterranean during the Chalcolithic period, which may reflect adaptation to gradual warming and aridity in the region. Furthermore, comparative genomic analysis revealed adaptive introgression of the KITLG locus from the Nubian ibex (C. nubiana) into African and SWA goats. The frequency of the selected allele at this locus was significantly higher among goat populations located near northeastern Africa. These results provide new insights into the genetic composition and history of goat populations in the SWA region.
  • Raw sequencing data that support the findings of this study have been deposited in the NCBI database (BioProjectID PRJNA801057). Furthermore, whole-genome sequencing data have been submitted to the Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa) and Science Data Bank (https://www.scidb.cn/en) under accession No. CRA007867 and 10. 57760/sciencedb.j00139.00032, respectively.
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    Y.J. and X.W. led the project and designed and conceived the study. H.A.N., Y. C., and J.Y.W. performed the data analysis. A.A., T.H., and A.E. collected the local goat samples. A.A. provided critical information about Iraqi goats. H.A.N. prepared the first draft of the manuscript. Y.J., X.W., J.A.L., W.W.F., and N.Y.X. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Alberto FJ, Boyer F, Orozco-terWengel P, Streeter I, Servin B, Villemereuil PD, et al. 2018. Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 9(1): 813. doi: 10.1038/s41467-018-03206-y
    [2]
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    [3]
    Al-Thuwaini TM, Al-Shuhaib MBS, Hussein ZM. 2019. Heat shock protein 70 polymorphism associated with physio-biochemical parameters of Awassi and Arabi Iraqi sheep. Euphrates Journal of Agriculture Science, 11(4): 84−95.
    [4]
    Arnold ML, Kunte K. 2017. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends in Ecology & Evolution, 32(8): 601−611.
    [5]
    Asadollahpour Nanaei H, Kharrati-Koopaee H, Esmailizadeh A. 2022. Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genomics, 23(1): 224. doi: 10.1186/s12864-022-08434-7
    [6]
    Ashraf S, Nazemi A, AghaKouchak A. 2021. Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1): 9135. doi: 10.1038/s41598-021-88522-y
    [7]
    Bangs MR, Douglas MR, Mussmann SM, Douglas ME. 2018. Unraveling historical introgression and resolving phylogenetic discord within Catostomus (Osteichthys: Catostomidae). BMC Evolutionary Biology, 18(1): 86. doi: 10.1186/s12862-018-1197-y
    [8]
    Berihulay H, Abied A, He XH, Jiang L, Ma YH. 2019. Adaptation mechanisms of small ruminants to environmental heat stress. Animals, 9(3): 75. doi: 10.3390/ani9030075
    [9]
    Bertolini F, Servin B, Talenti A, Rochat E, Kim ES, Oget C, et al. 2018. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetics Selection Evolution, 50(1): 57. doi: 10.1186/s12711-018-0421-y
    [10]
    Cao YH, Xu SS, Shen M, Chen ZH, Gao L, Lv FH, et al. 2021. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Molecular Biology and Evolution, 38(3): 838−855. doi: 10.1093/molbev/msaa236
    [11]
    Castelló JR, Huffman B, Groves C. 2016. Bovids of the World: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives. Princeton: Princeton University Press.
    [12]
    Chebii VJ, Oyola SO, Kotze A, Entfellner JBD, Mutuku JM, Agaba M. 2020. Genome-Wide analysis of Nubian ibex reveals candidate positively selected genes that contribute to its adaptation to the desert environment. Animals, 10(11): 2181. doi: 10.3390/ani10112181
    [13]
    Chen NB, Cai YD, Chen QM, Li R, Wang K, Huang YZ, et al. 2018. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9(1): 2337. doi: 10.1038/s41467-018-04737-0
    [14]
    China National Commission of Animal Genetic Resources. 2011. Animal Genetic Resources in China: Sheep and Goats. Beijing: China Agriculture Press. (in Chinese)
    [15]
    Clarke J, Brooks N, Banning EB, Bar-Matthews M, Campbell S, Clare L, et al. 2016. Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: a comparative study of environmental and archaeological evidence. Quaternary Science Reviews, 136: 96−121. doi: 10.1016/j.quascirev.2015.10.003
    [16]
    Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, et al. 2018. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genetics Selection Evolution, 50(1): 58. doi: 10.1186/s12711-018-0422-x
    [17]
    Daly KG, Delser PM, Mullin VE, Scheu A, Mattiangeli V, Teasdale MD, et al. 2018. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science, 361(6397): 85−88. doi: 10.1126/science.aas9411
    [18]
    Daly KG, Mattiangeli V, Hare AJ, Davoudi H, Fathi H, Doost SB, et al. 2021. Herded and hunted goat genomes from the dawn of domestication in the zagros mountains. Proceedings of the National Academy of Sciences of the United States of America, 118(25): e2100901118. doi: 10.1073/pnas.2100901118
    [19]
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [20]
    Decker JE, McKay SD, Rolf MM, Kim J, Molina Alcalá A, Sonstegard TS, et al. 2014. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genetics, 10(3): e1004254. doi: 10.1371/journal.pgen.1004254
    [21]
    Deng L, Xu SH. 2018. Adaptation of human skin color in various populations. Hereditas, 155: 1. doi: 10.1186/s41065-017-0036-2
    [22]
    Dias-Alves T, Mairal J, Blum MGB. 2018. Loter: a software package to infer local ancestry for a wide range of species. Molecular Biology and Evolution, 35(9): 2318−2326. doi: 10.1093/molbev/msy126
    [23]
    Gooki FG, Mohammadabadi M, Fozi MA, Soflaei M. 2019. Association of Biometric Traits with growth hormone gene diversity in Raini cashmere goats. Walailak Journal of Science and Technology (WJST), 16(7): 499–508.
    [24]
    Gooki FG, Mohammadabadi MR, Asadi Fozi M. 2018. Polymorphism of the growth hormone gene and its effect on production and reproduction traits in goat. Iranian Journal of Applied Animal Science, 8(4): 653−659.
    [25]
    Guenther CA, Tasic B, Luo LQ, Bedell MA, Kingsley DM. 2014. A molecular basis for classic blond hair color in Europeans. Nature Genetics, 46(7): 748−752. doi: 10.1038/ng.2991
    [26]
    Harney É, May H, Shalem D, Rohland N, Mallick S, Lazaridis I, et al. 2018. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nature Communications, 9(1): 3336. doi: 10.1038/s41467-018-05649-9
    [27]
    Kaniewski D, Van Campo E, Weiss H. 2012. Drought is a recurring challenge in the Middle East. Proceedings of the National Academy of Sciences of the United States of America, 109(10): 3862−3867. doi: 10.1073/pnas.1116304109
    [28]
    Kingston SE, Parchman TL, Gompert Z, Buerkle CA, Braun MJ. 2017. Heterogeneity and concordance in locus-specific differentiation and introgression between species of towhees. Journal of Evolutionary Biology, 30(3): 474−485. doi: 10.1111/jeb.13033
    [29]
    Köchl S, Niederstätter H, Parson W. 2005. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods in Molecular Biology, 297: 13−30.
    [30]
    Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics, 15(1): 356. doi: 10.1186/s12859-014-0356-4
    [31]
    Lawson DJ, Hellenthal G, Myers S, Falush D. 2012. Inference of population structure using dense haplotype data. PLoS Genetics, 8(1): e1002453. doi: 10.1371/journal.pgen.1002453
    [32]
    Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. 2016. Genomic insights into the origin of farming in the ancient Near East. Nature, 536(7617): 419−424. doi: 10.1038/nature19310
    [33]
    Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5): 589−595. doi: 10.1093/bioinformatics/btp698
    [34]
    Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P. 2001. Multiple maternal origins and weak phylogeographicstructure in domestic goats. Proceedings of the National Academy of Sciences of the United States of America, 98(10): 5927−5932. doi: 10.1073/pnas.091591198
    [35]
    Malinsky M, Matschiner M, Svardal H. 2021. Dsuite-Fast D-statistics and related admixture evidence from VCF files. Molecular Ecology Resources, 21(2): 584−595. doi: 10.1111/1755-0998.13265
    [36]
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [37]
    McManus CM, Faria DA, Lucci CM, Louvandini H, Pereira SA, Paiva SR. 2020. Heat stress effects on sheep: are hair sheep more heat resistant?. Theriogenology, 155: 157−167. doi: 10.1016/j.theriogenology.2020.05.047
    [38]
    Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, et al. 2017. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nature Genetics, 49(3): 470−475. doi: 10.1038/ng.3775
    [39]
    Middleton NJ. 1986. A geography of dust storms in South-West Asia. Journal of Climatology, 6(2): 183−196. doi: 10.1002/joc.3370060207
    [40]
    Moghbeli SM, Barazandeh A, Vatankhah M, Mohammadabadi M. 2013. Genetics and non-genetics parameters of body weight for post-weaning traits in Raini Cashmere goats. Tropical Animal Health and Production, 45(7): 1519−1524. doi: 10.1007/s11250-013-0393-4
    [41]
    Morrison-Graham K, Takahashi Y. 1993. Steel factor and c‐Kit receptor: from mutants to a growth factor system. BioEssays, 15(2): 77−83. doi: 10.1002/bies.950150202
    [42]
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan YP, et al. 2012. Ancient admixture in human history. Genetics, 192(3): 1065−1093. doi: 10.1534/genetics.112.145037
    [43]
    Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics, 2(12): e190. doi: 10.1371/journal.pgen.0020190
    [44]
    Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8(11): e1002967. doi: 10.1371/journal.pgen.1002967
    [45]
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [46]
    Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H, et al. 2018. An integrated framework to identify wildlife populations under threat from climate change. Molecular Ecology Resources, 18(1): 18−31. doi: 10.1111/1755-0998.12694
    [47]
    Saadatabadi LM, Mohammadabadi M, Amiri Ghanatsaman Z, Babenko O, Stavetska R, Kalashnik O, et al. 2021. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Veterinary Research, 17(1): 369. doi: 10.1186/s12917-021-03077-4
    [48]
    Schlebusch C. 2019. Population migration and adaptation during the African Holocene: a genetic perspective. In: Sahle Y, Reyes-Centeno H, Bentz C. Modern Human Origins and Dispersal. Tübingen: Kerns Verlag, 261–283.
    [49]
    Spolaore E, Wacziarg R. 2009. The diffusion of development. The Quarterly Journal of Economics, 124(2): 469−529. doi: 10.1162/qjec.2009.124.2.469
    [50]
    Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. 2007. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics, 39(12): 1443−1452. doi: 10.1038/ng.2007.13
    [51]
    Sun WY, Wang B, Zhang Q, Chen DL, Lu GN, Liu J. 2021. Middle east climate response to the saharan vegetation collapse during the mid-holocene. Journal of Climate, 34(1): 229−242. doi: 10.1175/JCLI-D-20-0317.1
    [52]
    Terhorst J, Kamm JA, Song YS. 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics, 49(2): 303−309. doi: 10.1038/ng.3748
    [53]
    Vaghefi SA, Keykhai M, Jahanbakhshi F, Sheikholeslami J, Ahmadi A, Yang H, et al. 2019. The future of extreme climate in Iran. Scientific Reports, 9(1): 1464. doi: 10.1038/s41598-018-38071-8
    [54]
    Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG, Delser PM, et al. 2019. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science, 365(6449): 173−176. doi: 10.1126/science.aav1002
    [55]
    Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38(6): 1358−1370.
    [56]
    Yang ZH, Shi H, Ma PC, Zhao SL, Kong QH, Bian TH, et al. 2018. Darwinian positive selection on the pleiotropic effects of KITLG explain skin pigmentation and winter temperature adaptation in Eurasians. Molecular Biology and Evolution, 35(9): 2272−2283. doi: 10.1093/molbev/msy136
    [57]
    Zeder MA. 2008. Animal domestication in the Zagros: an update and directions for future research. In: Vila E, Gourichon L, Choyke A, Buitenhuis H. Archaeozoology of the Near East VII. Lyon: Maison de l’Orient et de la Méditerranée, 243–277.
    [58]
    Zeder MA, Hesse B. 2000. The initial domestication of goats (Capra hircus) in the Zagros mountains 10, 000 years ago. Science, 287(5461): 2254−2257. doi: 10.1126/science.287.5461.2254
    [59]
    Zheng ZQ, Wang XH, Li M, Li YJ, Yang ZR, Wang XL, et al. 2020. The origin of domestication genes in goats. Science Advances, 6(21): eaaz5216. doi: 10.1126/sciadv.aaz5216
  • ZR-2022-242-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (3561) PDF downloads(556) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return