Volume 43 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Zhi-Ya Chen, Luxin Peng, Mengdi Zhao, Yu Li, Mochizuki Takahiko, Louis Tao, Peng Zou, Yan Zhang. Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice. Zoological Research, 2022, 43(4): 615-633. doi: 10.24272/j.issn.2095-8137.2022.121
Citation: Zhi-Ya Chen, Luxin Peng, Mengdi Zhao, Yu Li, Mochizuki Takahiko, Louis Tao, Peng Zou, Yan Zhang. Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice. Zoological Research, 2022, 43(4): 615-633. doi: 10.24272/j.issn.2095-8137.2022.121

Differences in action potential propagation speed and axon initial segment plasticity between neurons from Sprague-Dawley rats and C57BL/6 mice

doi: 10.24272/j.issn.2095-8137.2022.121
Funds:  This work was supported by the National Science and Technology Innovation 2030-Major Program of “Brain Science and Brain-Like Research” (2022ZD0211800), National Natural Science Foundation of China General Research Grant (81971679, 21727806, 31771147) and Major Research Grant (91632305, 32088101), Ministry of Science and Technology (2018YFA0507600, 2017YFA0503600), Qidong-PKU SLS Innovation Fund (2016000663), and Fundamental Research Funds for the Central Universities and National Key R&D Program of China (2020AAA0105200). P.Z. was sponsored by the Bayer Investigator Award
More Information
  • Action potentials (APs) in neurons are generated at the axon initial segment (AIS). AP dynamics, including initiation and propagation, are intimately associated with neuronal excitability and neurotransmitter release kinetics. Most learning and memory studies at the single-neuron level have relied on the use of animal models, most notably rodents. Here, we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley (SD) rats and C57BL/6 (C57) mice with genetically encoded voltage indicator (GEVI)-based voltage imaging. Our data showed that APs traveled bidirectionally in neurons from both species; forward-propagating APs (fpAPs) had a different speed than backpropagating APs (bpAPs). Additionally, we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites. Compared with rat neurons, mouse neurons exhibited higher bpAP speed and lower fpAP speed, more distally located ankyrin G (AnkG) in AISs, and longer Nav1.2 lengths in AISs. Moreover, during AIS plasticity, AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons; in mouse neurons, however, they showed a longer AnkG-labeled length and more distal Nav1.2 location. Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds, different AnkG and Nav1.2 patterns in the AIS, and different AIS plasticity properties, indicating that comparisons between these species must be carefully considered.
  • loading
  • [1]
    Abbott J, Ye TY, Krenek K, Gertner RS, Ban S, Kim Y, et al. 2020. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nature Biomedical Engineering, 4(2): 232−241. doi: 10.1038/s41551-019-0455-7
    Alle H, Geiger JRP. 2006. Combined analog and action potential coding in hippocampal mossy fibers. Science, 311(5765): 1290−1293. doi: 10.1126/science.1119055
    Antic SD. 2003. Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. The Journal of Physiology, 550(1): 35−50. doi: 10.1113/jphysiol.2002.033746
    Atherton JF, Wokosin DL, Ramanathan S, Bevan MD. 2008. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus. The Journal of Physiology, 586(23): 5679−5700. doi: 10.1113/jphysiol.2008.155861
    Bakkum DJ, Frey U, Radivojevic M, Russell TL, Müller J, Fiscella M, et al. 2013. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nature Communications, 4: 2181. doi: 10.1038/ncomms3181
    Bando Y, Sakamoto M, Kim S, Ayzenshtat I, Yuste R. 2019. Comparative evaluation of genetically encoded voltage indicators. Cell Reports, 26(3): 802−813.e4. doi: 10.1016/j.celrep.2018.12.088
    Bashir ZI, Collingridge GL. 1992. Synaptic plasticity: long-term potentiation in the hippocampus. Current Opinion in Neurobiology, 2(3): 328−335. doi: 10.1016/0959-4388(92)90124-4
    Bender KJ, Trussell LO. 2012. The physiology of the axon initial segment. Annual Review of Neuroscience, 35: 249−265. doi: 10.1146/annurev-neuro-062111-150339
    Chen R, Tilley MR, Wei H, Zhou FW, Zhou FM, Ching S, et al. 2006. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proceedings of the National Academy of Sciences of the United States of America, 103(24): 9333−9338. doi: 10.1073/pnas.0600905103
    Clark BD, Goldberg EM, Rudy B. 2009. Electrogenic tuning of the axon initial segment. The Neuroscientist, 15(6): 651−668. doi: 10.1177/1073858409341973
    Cui J, Wang YF, Dong QP, Wu SM, Xiao XZ, Hu JY, et al. 2011. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. Journal of Neuroscience, 31(45): 16227−16240. doi: 10.1523/JNEUROSCI.3915-11.2011
    Debanne D. 2004. Information processing in the axon. Nature Reviews Neuroscience, 5(4): 304−316. doi: 10.1038/nrn1397
    DRaDR A. 1922. SEMON, R. -The Mneme.
    Emmenegger V, Obien MEJ, Franke F, Hierlemann A. 2019. Technologies to study action potential propagation with a focus on HD-MEAs. Frontiers in Cellular Neuroscience, 13: 159. doi: 10.3389/fncel.2019.00159
    Evans MD, Dumitrescu AS, Kruijssen DLH, Taylor SE, Grubb MS. 2015. Rapid modulation of axon initial segment length influences repetitive spike firing. Cell Reports, 13(6): 1233−1245. doi: 10.1016/j.celrep.2015.09.066
    Foust A, Popovic M, Zecevic D, McCormick DA. 2010. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar purkinje neurons. Journal of Neuroscience, 30(20): 6891−6902. doi: 10.1523/JNEUROSCI.0552-10.2010
    Frick KM, Stillner ET, Berger-Sweeney J. 2000. Mice are not little rats: species differences in a one-day water maze task. Neuroreport, 11(16): 3461−3465. doi: 10.1097/00001756-200011090-00013
    Fried SI, Lasker ACW, Desai NJ, Eddington DK, Rizzo III JF. 2009. Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. Journal of Neurophysiology, 101(4): 1972−1987. doi: 10.1152/jn.91081.2008
    Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. 2005. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of Physiology, 568(1): 69−82. doi: 10.1113/jphysiol.2005.086793
    Goldstein SS, Rall W. 1974. Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14(10): 731−757. doi: 10.1016/S0006-3495(74)85947-3
    Grubb MS, Burrone J. 2010a. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature, 465(7301): 1070−1074. doi: 10.1038/nature09160
    Grubb MS, Burrone J. 2010b. Building and maintaining the axon initial segment. Current Opinion in Neurobiology, 20(4): 481−488. doi: 10.1016/j.conb.2010.04.012
    Grubb MS, Shu YS, Kuba H, Rasband MN, Wimmer VC, Bender KJ. 2011. Short-and long-term plasticity at the axon initial segment. Journal of Neuroscience, 31(45): 16049−16055. doi: 10.1523/JNEUROSCI.4064-11.2011
    Harris KM, Stevens JK. 1989. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. Journal of Neuroscience, 9(8): 2982−2997. doi: 10.1523/JNEUROSCI.09-08-02982.1989
    Hickman-Davis JM, Davis IC. 2006. Transgenic mice. Paediatric Respiratory Reviews, 7(1): 49−53. doi: 10.1016/j.prrv.2005.09.005
    Hirst WD, Abrahamsen B, Blaney FE, Calver AR, Aloj L, Price GW, et al. 2003. Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Molecular Pharmacology, 64(6): 1295−1308. doi: 10.1124/mol.64.6.1295
    Hochbaum DR, Zhao YX, Farhi SL, Klapoetke N, Werley CA, Kapoor V, et al. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 11(8): 825−833. doi: 10.1038/nmeth.3000
    Hu WQ, Shu YS. 2012. Axonal bleb recording. Neuroscience Bulletin, 28(4): 342−350. doi: 10.1007/s12264-012-1247-1
    Hu WQ, Tian CP, Li T, Yang MP, Hou H, Shu YS. 2009. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nature Neuroscience, 12(8): 996−1002. doi: 10.1038/nn.2359
    Jarrard LE. 1993. On the role of the hippocampus in learning and memory in the rat. Behavioral and Neural Biology, 60(1): 9−26. doi: 10.1016/0163-1047(93)90664-4
    Josselyn SA, Köhler S, Frankland PW. 2015. Finding the engram. Nature Reviews Neuroscience, 16(9): 521−534. doi: 10.1038/nrn4000
    Josselyn SA, Köhler S, Frankland PW. 2017. Heroes of the engram. Journal of Neuroscience, 37(18): 4647−4657. doi: 10.1523/JNEUROSCI.0056-17.2017
    Kamal A, Biessels GJ, Urban IJA, Gispen WH. 1999. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90(3): 737−745. doi: 10.1016/S0306-4522(98)00485-0
    Kampa BM, Stuart GJ. 2006. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. Journal of Neuroscience, 26(28): 7424−7432. doi: 10.1523/JNEUROSCI.3062-05.2006
    Kiskinis E, Kralj JM, Zou P, Weinstein EN, Zhang HK, Tsioras K, et al. 2018. All-optical electrophysiology for high-throughput functional characterization of a human iPSC-derived motor neuron model of ALS. Stem Cell Reports, 10(6): 1991−2004. doi: 10.1016/j.stemcr.2018.04.020
    Klein C, Westenberger A. 2012. Genetics of parkinson's disease. Cold Spring Harbor Perspectives in Medicine, 2(1): a008888.
    Kole MHP, Letzkus JJ, Stuart GJ. 2007. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55(4): 633−647. doi: 10.1016/j.neuron.2007.07.031
    Kole MHP, Stuart GJ. 2012. Signal processing in the axon initial segment. Neuron, 73(2): 235−247. doi: 10.1016/j.neuron.2012.01.007
    Kuba H, Ishii TM, Ohmori H. 2006. Axonal site of spike initiation enhances auditory coincidence detection. Nature, 444(7122): 1069−1072. doi: 10.1038/nature05347
    Kuba H, Oichi Y, Ohmori H. 2010. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature, 465(7301): 1075−1078. doi: 10.1038/nature09087
    Kuba H, Yamada R, Ishiguro G, Adachi R. 2015. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity. Nature Communications, 6: 8815. doi: 10.1038/ncomms9815
    Larkum ME, Zhu JJ, Sakmann B. 2001. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of Physiology, 533(2): 447−466. doi: 10.1111/j.1469-7793.2001.0447a.x
    Lazarov O, Hollands C. 2016. Hippocampal neurogenesis: learning to remember. Progress in Neurobiology, 138–140: 1–18.
    Leterrier C. 2018. The axon initial segment: an updated viewpoint. Journal of Neuroscience, 38(9): 2135−2145. doi: 10.1523/JNEUROSCI.1922-17.2018
    Liu P, Miller EW. 2020. Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators. Accounts of Chemical Research, 53(1): 11−19. doi: 10.1021/acs.accounts.9b00514
    Lorincz A, Nusser Z. 2010. Molecular identity of dendritic voltage-gated sodium channels. Science, 328(5980): 906−909. doi: 10.1126/science.1187958
    Mainen ZF, Sejnowski TJ. 1998. Modeling active dendritic processes in pyramidal neurons. In: Koch C, Segev I. Methods in Neuronal Modeling. Cambridge: MIT Press, 171–210.
    Megı́as M, Emri Z, Freund TF, Gulyás AI. 2001. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102(3): 527−540. doi: 10.1016/S0306-4522(00)00496-6
    Morris RG. 1989. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience, 9(9): 3040−3057. doi: 10.1523/JNEUROSCI.09-09-03040.1989
    Morris RG, Davis S, Butcher SP. 1990. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage?. Philosophical Transactions of the Royal Society B:Biological Sciences, 329(1253): 187−204. doi: 10.1098/rstb.1990.0164
    Muir J, Kittler JT. 2014. Plasticity of GABAA receptor diffusion dynamics at the axon initial segment. Frontiers in Cellular Neuroscience, 8: 151.
    Nevian T, Larkum ME, Polsky A, Schiller J. 2007. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neuroscience, 10(2): 206−214. doi: 10.1038/nn1826
    Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, et al. 2004. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell, 119(5): 719−732.
    Peng LX, Xu YX, Zou P. 2017. Genetically-encoded voltage indicators. Chinese Chemical Letters, 28(10): 1925−1928. doi: 10.1016/j.cclet.2017.09.037
    Picciotto MR, Wickman K. 1998. Using knockout and transgenic mice to study neurophysiology and behavior. Physiological Reviews, 78(4): 1131−1163. doi: 10.1152/physrev.1998.78.4.1131
    Poirazi P, Brannon T, Mel BW. 2003. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron, 37(6): 977−987. doi: 10.1016/S0896-6273(03)00148-X
    Popovic MA, Foust AJ, McCormick DA, Zecevic D. 2011. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. The Journal of Physiology, 589(17): 4167−4187. doi: 10.1113/jphysiol.2011.209015
    Rama S, Zbili M, Debanne D. 2018. Signal propagation along the axon. Current Opinion in Neurobiology, 51: 37−44. doi: 10.1016/j.conb.2018.02.017
    Rasband MN. 2010. The axon initial segment and the maintenance of neuronal polarity. Nature Reviews Neuroscience, 11(8): 552−562. doi: 10.1038/nrn2852
    Rocha-Martins M, Cavalheiro GR, Matos-Rodrigues GE, Martins RAP. 2015. From Gene Targeting to Genome Editing: transgenic animals applications and beyond. Anais da Academic Brasileira de Ciencias, 87(2 Suppl): 1323–1348.
    Routh BN, Johnston D, Harris K, Chitwood RA. 2009. Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse. Journal of Neurophysiology, 102(4): 2288−2302. doi: 10.1152/jn.00082.2009
    Sabater VG, Rigby M, Burrone J. 2021. Voltage-gated potassium channels ensure action potential shape fidelity in distal axons. The Journal of Neuroscience, 41(25): 5372−5385. doi: 10.1523/JNEUROSCI.2765-20.2021
    Saraga F, Wu CP, Zhang L, Skinner FK. 2003. Active dendrites and spike propagation in multicompartment models of oriens‐lacunosum/moleculare hippocampal interneurons. The Journal of Physiology, 552(3): 673−689. doi: 10.1113/jphysiol.2003.046177
    Schmidt-Hieber C, Jonas P, Bischofberger J. 2008. Action potential initiation and propagation in hippocampal mossy fibre axons. The Journal of Physiology, 586(7): 1849−1857. doi: 10.1113/jphysiol.2007.150151
    Shu YS, Hasenstaub A, Duque A, Yu YG, McCormick DA. 2006. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature, 441(7094): 761−765. doi: 10.1038/nature04720
    Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. 2009. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. Journal of Neuroscience, 29(46): 14484−14495. doi: 10.1523/JNEUROSCI.1768-09.2009
    Sun XQ, Wu Y, Gu MX, Liu Z, Ma YL, Li J, et al. 2014. Selective filtering defect at the axon initial segment in Alzheimer’s disease mouse models. Proceedings of the National Academy of Sciences of the United States of America, 111(39): 14271−14276. doi: 10.1073/pnas.1411837111
    Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SB, et al. 2014. Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron, 83(6): 1418−1430. doi: 10.1016/j.neuron.2014.08.013
    Tonegawa S, Liu X, Ramirez S, Redondo R. 2015. Memory engram cells have come of age. Neuron, 87(5): 918−931. doi: 10.1016/j.neuron.2015.08.002
    Triarhou LC. 2014. Axons emanating from dendrites: phylogenetic repercussions with Cajalian hues. Frontiers in Neuroanatomy, 8: 133.
    Vetter P, Roth A, Häusser M. 2001. Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2): 926−937. doi: 10.1152/jn.2001.85.2.926
    Voronin LL. 1993. On the quantal analysis of hippocampal long-term potentiation and related phenomena of synaptic plasticity. Neuroscience, 56(2): 275−304. doi: 10.1016/0306-4522(93)90332-A
    Wang LF, Wang HT, Yu LC, Chen Y. 2011. Role of axonal sodium-channel band in neuronal excitability. Physical Review E, 84(5): 052901.
    Whishaw IQ. 1995. A comparison of rats and mice in a swimming pool place task and matching to place task: some surprising differences. Physiology & Behavior, 58(4): 687−693.
    Whishaw IQ, Metz GAS, Kolb B, Pellis SM. 2001. Accelerated nervous system development contributes to behavioral efficiency in the laboratory mouse: a behavioral review and theoretical proposal. Developmental Psychobiology, 39(3): 151−170. doi: 10.1002/dev.1041
    Wyass JM, Van Groen T. 1992. Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus, 2(1): 1−11. doi: 10.1002/hipo.450020102
    Xu YX, Zou P, Cohen AE. 2017. Voltage imaging with genetically encoded indicators. Current Opinion in Chemical Biology, 39: 1−10. doi: 10.1016/j.cbpa.2017.04.005
    Yamada R, Kuba H. 2016. Structural and functional plasticity at the axon initial segment. Frontiers in Cellular Neuroscience, 10: 250.
    Yang J, Xiao YJ, Li L, He QS, Li M, Shu YS. 2019. Biophysical properties of somatic and axonal voltage-gated sodium channels in midbrain dopaminergic neurons. Frontiers in Cellular Neuroscience, 13: 317. doi: 10.3389/fncel.2019.00317
    Yermakov LM, Drouet DE, Griggs RB, Elased KM, Susuki K. 2018. Type 2 diabetes leads to axon initial segment shortening in db/db mice. Frontiers in Cellular Neuroscience, 12: 146. doi: 10.3389/fncel.2018.00146
  • ZR-2022-121 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2073) PDF downloads(191) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint