Turn off MathJax
Article Contents
Guan-Feng Xu, Cheng-Cheng Gong, Yu-Lin Tian, Tong-Yu Fu, Yi-Guang Lin, Hao Lyu, Yu-Ling Peng, Chun-Mei Tong, Qi-Li Feng, Qi-Sheng Song, Si-Chun Zheng. DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori. Zoological Research, 2022, 43(4): 552-565. doi: 10.24272/j.issn.2095-8137.2022.031
Citation: Guan-Feng Xu, Cheng-Cheng Gong, Yu-Lin Tian, Tong-Yu Fu, Yi-Guang Lin, Hao Lyu, Yu-Ling Peng, Chun-Mei Tong, Qi-Li Feng, Qi-Sheng Song, Si-Chun Zheng. DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori. Zoological Research, 2022, 43(4): 552-565. doi: 10.24272/j.issn.2095-8137.2022.031

DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in Bombyx mori

doi: 10.24272/j.issn.2095-8137.2022.031
Funds:  This work was supported by the National Natural Science Foundation of China (31872286, 32100374)
More Information
  • Corresponding author: E-mail: sczheng@scnu.edu.cn
  • Received Date: 2022-03-30
  • Accepted Date: 2022-05-24
  • Published Online: 2022-05-24
  • Cell division and differentiation after egg fertilization are critical steps in the development of embryos from single cells to multicellular individuals and are regulated by DNA methylation via its effects on gene expression. However, the mechanisms by which DNA methylation regulates these processes in insects remain unclear. Here, we studied the impacts of DNA methylation on early embryonic development in Bombyx mori. Genome methylation and transcriptome analysis of early embryos showed that DNA methylation events mainly occurred in the 5' region of protein metabolism-related genes. The transcription factor gene zinc finger protein 615 (ZnF615) was methylated by DNA methyltransferase 1 (Dnmt1) to be up-regulated and bind to protein metabolism-related genes. Dnmt1 RNA interference (RNAi) revealed that DNA methylation mainly regulated the expression of nonmethylated nutrient metabolism-related genes through ZnF615. The same sites in the ZnF615 gene were methylated in ovaries and embryos. Knockout of ZnF615 using CRISPR/Cas9 gene editing decreased the hatching rate and egg number to levels similar to that of Dnmt1 knockout. Analysis of the ZnF615 methylation rate revealed that the DNA methylation pattern in the parent ovary was maintained and doubled in the offspring embryo. Thus, Dnmt1-mediated intragenic DNA methylation of the transcription factor ZnF615 enhances its expression to ensure ovarian and embryonic development.
  • loading
  • [1]
    Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR, Gallavotti A, et al. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 12(8): 1659−1672. doi: 10.1038/nprot.2017.055
    Bewick AJ, Sanchez Z, Mckinney EC, Moore AJ, Moore PJ, Schmitz RJ. 2019. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug. Oncopeltus fasciatus. Epigenetics & Chromatin, 12(1): 6.
    Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes & Development, 16(1): 6−21.
    Boiani M, Eckardt S, Schöler HR, McLaughlin KJ. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes & Development, 16(10): 1209−1219.
    Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, et al. 2012. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 22(19): 1755–1764.
    Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, et al. 2003. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 130(8): 1673−1680. doi: 10.1242/dev.00366
    Byrne JA, Simonsson S, Western PS, Gurdon JB. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Current Biology, 13(14): 1206−1213. doi: 10.1016/S0960-9822(03)00462-7
    Chodavarapu RK, Feng SH, Bernatavichute YV, Chen PY, Stroud H, Yu YC, et al. 2010. Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304): 388−392. doi: 10.1038/nature09147
    Dos Santos Mendonça A, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN, et al. 2019. DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics, 14(6): 568−588. doi: 10.1080/15592294.2019.1600828
    Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F. 2013. Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. Journal of Experimental Biology, 216(8): 1423–1429.
    Feliciello I, Parazajder J, Akrap I, Ugarković Đ. 2013. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. Epigenetics, 8(5): 534−541. doi: 10.4161/epi.24507
    Glastad KM, Hunt BG, Goodisman MAD. 2014. Evolutionary insights into DNA methylation in insects. Current Opinion in Insect Science, 1: 25−30. doi: 10.1016/j.cois.2014.04.001
    Glastad KM, Hunt BG, Yi SV, Goodisman MAD. 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Molecular Biology, 20(5): 553−565. doi: 10.1111/j.1365-2583.2011.01092.x
    Greenberg MVC, Bourc'his D. 2019. The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology, 20(10): 590−607. doi: 10.1038/s41580-019-0159-6
    Hellman A, Chess A. 2007. Gene body-specific methylation on the active X chromosome. Science, 315(5815): 1141−1143. doi: 10.1126/science.1136352
    Khurad AM, Zhang MJ, Deshmukh CG, Bahekar RS, Tiple AD, Zhang CX. 2009. A new continuous cell line from larval ovaries of silkworm. Bombyx mori. In Vitro Cellular & Developmental Biology-Animal, 45(8): 414−419.
    Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357−359. doi: 10.1038/nmeth.1923
    Levin E, McCue MD, Davidowitz G. 2017. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proceedings of the Royal Society B:Biological Sciences, 284(1848): 20162126. doi: 10.1098/rspb.2016.2126
    Li B, Hu P, Zhu LB, You LL, Cao HH, Wang J, et al. 2020. DNA methylation is correlated with gene expression during diapause termination of early embryonic development in the silkworm (Bombyx mori). International Journal of Molecular Sciences, 21(2): 671. doi: 10.3390/ijms21020671
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315−322. doi: 10.1038/nature08514
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. 2010. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biology, 8(11): e1000506. doi: 10.1371/journal.pbio.1000506
    Lyko F, Maleszka R. 2011. Insects as innovative models for functional studies of DNA methylation. Trends in Genetics, 27(4): 127−131. doi: 10.1016/j.tig.2011.01.003
    Lyu H, Xu GF, Peng XZ, Gong CC, Peng YL, Song QS, et al. 2021. Interacting C/EBPg and YBP regulate DNA methyltransferase 1 expression in Bombyx mori embryos and ovaries. Insect Biochemistry and Molecular Biology, 134: 103583. doi: 10.1016/j.ibmb.2021.103583
    Meng H, Cao Y, Qin JZ, Song XY, Zhang Q, Shi Y, et al. 2015. DNA methylation, its mediators and genome integrity. International Journal of Biological Sciences, 11(5): 604−617. doi: 10.7150/ijbs.11218
    Naito Y, Hino K, Bono H, Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7): 1120−1123. doi: 10.1093/bioinformatics/btu743
    Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 44(W1): W160−W165. doi: 10.1093/nar/gkw257
    Razin A, Riggs AD. 1980. DNA methylation and gene function. Science, 210(4470): 604−610. doi: 10.1126/science.6254144
    Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao JF, Glass K, et al. 2010. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proceedings of the National Academy of Sciences of the United States of America, 107(47): 20311−20316. doi: 10.1073/pnas.1008688107
    Sarda S, Zeng J, Hunt BG, Yi SV. 2012. The Evolution of invertebrate gene body methylation. Molecular Biology and Evolution, 29(8): 1907−1916. doi: 10.1093/molbev/mss062
    Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J, et al. 2013. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 23(8): 1235−1247. doi: 10.1101/gr.155408.113
    Simonsson S, Gurdon J. 2004. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biology, 6(10): 984−990. doi: 10.1038/ncb1176
    Slieker RC, Roost MS, van Iperen L, Suchiman HED, Tobi EW, Carlotti F, et al. 2015. DNA methylation landscapes of human fetal development. PLoS Genetics, 11(10): e1005583. doi: 10.1371/journal.pgen.1005583
    Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. 2014. DNA methylation dynamics of the human preimplantation embryo. Nature, 511(7511): 611−615. doi: 10.1038/nature13581
    Takebayashi SI, Tamura T, Matsuoka C, Okano M. 2007. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Molecular and Cellular Biology, 27(23): 8243−8258. doi: 10.1128/MCB.00899-07
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3): 562−578. doi: 10.1038/nprot.2012.016
    Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. 2009. A census of human transcription factors: function, expression and evolution. Nature Reviews Genetics, 10(4): 252−263. doi: 10.1038/nrg2538
    Ventós-Alfonso A, Ylla G, Montañes JC, Belles X. 2020. DNMT1 promotes genome methylation and early embryo development in cockroaches. iScience, 23(12): 101778. doi: 10.1016/j.isci.2020.101778
    Wang J, Xia QY, He XM, Dai MT, Ruan J, Chen J, et al. 2005. SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Research, 33: D399−D402.
    Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, et al. 2013. Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genetics, 9(10): e1003872. doi: 10.1371/journal.pgen.1003872
    Weirauch MT, Hughes TR. 2011. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcellular Biochemistry, 52: 25−73.
    Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. 2010. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327(5963): 343−348. doi: 10.1126/science.1178028
    Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR. 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proceedings of the National Academy of Sciences of the United States of America, 81(9): 2806−2810. doi: 10.1073/pnas.81.9.2806
    Wu SY, Tong XL, Li CL, Lu KP, Tan D, Hu H, et al. 2019. Genome-wide identification and expression profiling of the C2H2-type zinc finger protein genes in the silkworm Bombyx mori. PeerJ, 7: e7222.
    Xi YX, Li W. 2009. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics, 10: 232. doi: 10.1186/1471-2105-10-232
    Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306(5703): 1937−1940. doi: 10.1126/science.1102210
    Xiang H, Li X, Dai FY, Xu X, Tan AJ, Chen L, et al. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics, 14: 646. doi: 10.1186/1471-2164-14-646
    Xiang H, Zhu JD, Chen Q, Dai FY, Li X, Li MW, et al. 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nature Biotechnology, 28(5): 516−520. doi: 10.1038/nbt.1626
    Xu GF, Gong CC, Lyu H, Deng HM, Zheng SC. 2022a. Dynamic transcriptome analysis of Bombyx mori embryonic development. Insect Science, 29(2): 344−362. doi: 10.1111/1744-7917.12934
    Xu GF, Lyu H, Yi YQ, Peng YL, Feng QL, Song QS, et al. 2021. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience, 24(2): 102040. doi: 10.1016/j.isci.2021.102040
    Xu GF, Tian YL, Peng YL, Zheng SC. 2022b. Knock down of target genes by RNA interference in the embryos of lepidopteran insect. Bombyx mori. STAR Protocols, 3(1): 101219. doi: 10.1016/j.xpro.2022.101219
    Xu GF, Yi YQ, Lyu H, Gong CC, Feng QL, Song QS, et al. 2020. DNA methylation suppresses chitin degradation and promotes the wing development by inhibiting Bmara-mediated chitinase expression in the silkworm. Bombyx mori. Epigenetics & Chromatin, 13(1): 34.
    Xu GF, Zhang J, Lyu H, Song QS, Feng QL, Xiang H, et al. 2018. DNA methylation mediates BmDeaf1-regulated tissue- and stage-specific expression of BmCHSA-2b in the silkworm. Bombyx mori. Epigenetics & Chromatin, 11(1): 32.
    Xu L, Huang HJ, Zhou X, Liu CW, Bao YY. 2017. Pancreatic lipase-related protein 2 is essential for egg hatching in the brown planthopper. Nilaparvata lugens. Insect Molecular Biology, 26(3): 277−285. doi: 10.1111/imb.12290
    Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. 2015. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annual Review of Entomology, 60: 435−452. doi: 10.1146/annurev-ento-010814-020803
    Yu GC, Wang LG, He QY. 2015. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14): 2382−2383. doi: 10.1093/bioinformatics/btv145
    Zemach A, McDaniel IE, Silva P, Zilberman D. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328(5980): 916−919. doi: 10.1126/science.1186366
    Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9): R137. doi: 10.1186/gb-2008-9-9-r137
    Zilberman D. 2008. The evolving functions of DNA methylation. Current Opinion in Plant Biology, 11(5): 554−559. doi: 10.1016/j.pbi.2008.07.004
    Zwier MV, Verhulst EC, Zwahlen RD, Beukeboom LW, van de Zande L. 2012. DNA methylation plays a crucial role during early Nasonia development. Insect Molecular Biology, 21(1): 129−138. doi: 10.1111/j.1365-2583.2011.01121.x
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (341) PDF downloads(91) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint