Volume 43 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Kai Zhao, Wei Zhang, Bei Li, Shi-Zhe Xie, Fan Yi, Ren-Di Jiang, Yun Luo, Xiang-Yang He, Yun-Zhi Zhang, Zheng-Li Shi, Li-Biao Zhang, Xing-Lou Yang. Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans. Zoological Research, 2022, 43(4): 514-522. doi: 10.24272/j.issn.2095-8137.2021.480
Citation: Kai Zhao, Wei Zhang, Bei Li, Shi-Zhe Xie, Fan Yi, Ren-Di Jiang, Yun Luo, Xiang-Yang He, Yun-Zhi Zhang, Zheng-Li Shi, Li-Biao Zhang, Xing-Lou Yang. Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans. Zoological Research, 2022, 43(4): 514-522. doi: 10.24272/j.issn.2095-8137.2021.480

Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans

doi: 10.24272/j.issn.2095-8137.2021.480
Funds:  This study was supported by the National Natural Science Foundation of China (31727901 to Z.L.S.), Key Program of the Chinese Academy of Sciences (KJZD-SW-L11 to Z.L.S.), Guangdong Province Natural Resources Services (Ecological Forestry Construction) Special Fund in 2021 (to L.B.Z.), and Youth Innovation Promotion Association of CAS (2019328 to X.L.Y.)
More Information
  • Corresponding author: E-mail: zhanglb@giz.gd.cnyangxl@wh.iov.cn
  • Received Date: 2022-04-05
  • Accepted Date: 2022-05-10
  • Published Online: 2022-05-17
  • Publish Date: 2022-07-18
  • Bats are reservoirs of various viruses. The widely distributed cave nectar bat (Eonycteris spelaea) is known to carry both filoviruses and coronaviruses. However, the potential transmission of theses bat viruses to humans is not fully understood. In this study, we tracked 16 E. spelaea bats in Mengla County, Yunnan Province, China, using miniaturized GPS devices to investigate their movements and potential contact with humans. Furthermore, to determine the prevalence of coronavirus and filovirus infections, we screened for the nucleic acids of the Měnglà virus (MLAV) and two coronaviruses (GCCDC1-CoV and HKU9-CoV) in anal swab samples taken from bats and for antibodies against these viruses in human serum samples. None of the serum samples were found to contain antibodies against the bat viruses. The GPS tracking results showed that the bats did not fly during the daytime and rarely flew to residential areas. The foraging range of individual bats also varied, with a mean cumulative nightly flight distance of 25.50 km and flight speed of up to 57.4 km/h. Taken together, these results suggest that the risk of direct transmission of GCCDC1-CoV, HKU9-CoV, and MLAV from E. spelaea bats to humans is very low under natural conditions.
  • loading
  • [1]
    Acharya PR, Racey PA, Sotthibandhu S, Bumrungsri S. 2015. Home-range and foraging areas of the dawn bat Eonycteris spelaea in agricultural areas of thailand. Acta Chiropterologica, 17(2): 307−319. doi: 10.3161/15081109ACC2015.17.2.006
    Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. 2017. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8(1): 1124. doi: 10.1038/s41467-017-00923-8
    Amman BR, Bird BH, Bakarr IA, Bangura J, Schuh AJ, Johnny J, et al. 2020. Isolation of Angola-like marburg virus from egyptian rousette bats from West Africa. Nature Communications, 11(1): 510. doi: 10.1038/s41467-020-14327-8
    Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. 2017. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio, 8(2): e00373−17.
    Baíllo A, Chacón JE. 2021. Statistical outline of animal home ranges: an application of set estimation. Handbook of Statistics, 44: 3–37.
    Boyle SA, Lourenço WC, da Silva LR, Smith AT. 2009. Home range estimates vary with sample size and methods. Folia Primatologica, 80(1): 33−42.
    Bumrungsri S, Lang DC, Harrower C, Sripaoraya E, Kitpipit K, Racey PA. 2013. The dawn bat, Eonycteris spelaea dobson (chiroptera: pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropterologica, 15(1): 95−104. doi: 10.3161/150811013X667894
    Castle KT, Weller TJ, Cryan PM, Hein CD, Schirmacher MR. 2015. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies. Ecology and Evolution, 5(14): 2980−2989. doi: 10.1002/ece3.1584
    Chen L, Liu B, Yang J, Jin Q. 2014. DBatVir: the database of bat-associated viruses. Database (Oxford), 2014: bau021. doi: 10.1093/database/bau021
    Choden K, Ravon S, Epstein JH, Hoem T, Furey N, Gely M, et al. 2019. Pteropus lylei primarily forages in residential areas in Kandal, Cambodia. Ecology and Evolution, 9(7): 4181−4191. doi: 10.1002/ece3.5046
    Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection, 4(2): 145−151. doi: 10.1016/S1286-4579(01)01522-2
    Dovih P, Laing ED, Chen YH, Low DHW, Ansil BR, Yang X, et al. 2019. Filovirus-reactive antibodies in humans and bats in Northeast India imply zoonotic spillover. PLOS Neglected Tropical Diseases, 13(10): e0007733. doi: 10.1371/journal.pntd.0007733
    Egert-Berg K, Hurme ER, Greif S, Goldstein A, Harten L, Herrera MLG, et al. 2018. Resource ephemerality drives social foraging in bats. Current Biology, 28(22): 3667−3673.e5. doi: 10.1016/j.cub.2018.09.064
    Fahr J, Abedi-Lartey M, Esch T, Machwitz M, Suu-Ire R, Wikelski M, et al. 2015. Pronounced seasonal changes in the movement ecology of a highly gregarious central-place forager, the african straw-coloured fruit bat (Eidolon helvum). PLoS One, 10(10): e0138985. doi: 10.1371/journal.pone.0138985
    Fauci AS, Morens DM. 2012. The perpetual challenge of infectious diseases. New England Journal of Medicine, 366(5): 454−461. doi: 10.1056/NEJMra1108296
    Francis C, Rosell-Ambal G, Tabaranza B, Carino P, Helgen K, Molur S, et al. 2008. Eonycteris Spelaea (The IUCN Red List of Threatened Species 2008: e. T7787A12850087. ). International Union for Conservation of Nature.
    Gao FL, Liu XW, Du ZG, Hou H, Wang XY, Wang FL, et al. 2019. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology, 528: 110−117. doi: 10.1016/j.virol.2018.12.001
    Ge XY, Li JL, Yang XL, Chmura AA, Zhu GJ, Epstein JH, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477): 535−538. doi: 10.1038/nature12711
    Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC. 2007. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS One, 2(2): e207. doi: 10.1371/journal.pone.0000207
    Halpin K, Young PL, Field HE, Mackenzie JS. 2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 81(8): 1927−1932. doi: 10.1099/0022-1317-81-8-1927
    Hayne DW. 1949. Calculation of size of home range. Journal of Mammalogy, 30(1): 1−18. doi: 10.2307/1375189
    Heideman PD, Heaney LR. 1989. Population biology and estimates of abundance of fruit bats (Pteropodidae) in Philippine submontane rainforest. Journal of Zoology, 218(4): 565−586. doi: 10.1111/j.1469-7998.1989.tb04999.x
    Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog, 13(11): e1006698. doi: 10.1371/journal.ppat.1006698
    Huang CP, Liu WJ, Xu W, Jin T, Zhao YZ, Song JD, et al. 2016. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog, 12(9): e1005883. doi: 10.1371/journal.ppat.1005883
    Hurme E, Gurarie E, Greif S, Herrera MLG, Flores-Martínez JJ, Wilkinson GS, et al. 2019. Acoustic evaluation of behavioral states predicted from GPS tracking: a case study of a marine fishing bat. Movement Ecology, 7: 21. doi: 10.1186/s40462-019-0163-7
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. 2008. Global trends in emerging infectious diseases. Nature, 451(7181): 990−993. doi: 10.1038/nature06536
    Kitchener DJ, Gunnell A, Maharadatunkamsi. 1990. Aspects of the feeding biology of fruit bats (Pteropodidae) on Lombok Island, Nusa Tenggara, Indonesia. Mammalia, 54(4): 561−578.
    Latinne A, Hu B, Olival KJ, Zhu GJ, Zhang LB, Li HY, et al. 2020. Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 11(1): 4235. doi: 10.1038/s41467-020-17687-3
    Li HY, Mendelsohn E, Zong C, Zhang W, Hagan E, Wang N, et al. 2019. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosafety and Health, 1(2): 84−90. doi: 10.1016/j.bsheal.2019.10.004
    Li WD, Shi ZL, Yu M, Ren WZ, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748): 676−679. doi: 10.1126/science.1118391
    Loh EH, Zambrana-Torrelio C, Olival KJ, Bogich TL, Johnson CK, Mazet JAK, et al. 2015. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector-Borne and Zoonotic Diseases, 15(7): 432−437. doi: 10.1089/vbz.2013.1563
    Luo Y, Li B, Jiang RD, Hu BJ, Luo DS, Zhu GJ, et al. 2018. Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan province, China during 2009–2016. Virologica Sinica, 33(1): 87−95. doi: 10.1007/s12250-018-0017-2
    Meng FJ, Wang X, Batbayar N, Natsagdorj T, Davaasuren B, Damba I, et al. 2020. Consistent habitat preference underpins the geographically divergent autumn migration of individual Mongolian common shelducks. Current Zoology, 66(4): 355−362. doi: 10.1093/cz/zoz056
    Mishra PK, Rai A, Rai SC. 2020. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2): 133−143. doi: 10.1016/j.ejrs.2019.02.001
    Mohr CO. 1947. Table of equivalent populations of North American small mammals. The American Midland Naturalist, 37(1): 223−249. doi: 10.2307/2421652
    O'Mara MT, Wikelski M, Dechmann DKN. 2014. 50 years of bat tracking: device attachment and future directions. Methods in Ecology and Evolution, 5(4): 311−319. doi: 10.1111/2041-210X.12172
    Oleksy R, Giuggioli L, McKetterick TJ, Racey PA, Jones G. 2017. Flying foxes create extensive seed shadows and enhance germination success of pioneer plant species in deforested Madagascan landscapes. PLoS One, 12(9): e0184023. doi: 10.1371/journal.pone.0184023
    Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. 2017. Host and viral traits predict zoonotic spillover from mammals. Nature, 546(7660): 646−650. doi: 10.1038/nature22975
    Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. 2017. Pathways to zoonotic spillover. Nature Reviews Microbiology, 15(8): 502−510. doi: 10.1038/nrmicro.2017.45
    Randhawa N, Bird BH, VanWormer E, Sijali Z, Kilonzo C, Msigwa A, et al. 2020. Fruit bats in flight: a look into the movements of the ecologically important Eidolon helvum in Tanzania. One Health Outlook, 2(1): 16. doi: 10.1186/s42522-020-00020-9
    Sikes RS, The Animal Care and Use Committee of the American Society of Mammalogists. 2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97(3): 663−688. doi: 10.1093/jmammal/gyw078
    Sikes RS, Bryan II JA. 2016. Institutional animal care and use committee considerations for the use of wildlife in research and education. ILAR Journal, 56(3): 335−341. doi: 10.1093/ilar/ilv071
    Srithongchuay T, Bumrungsri S, Sripao-Raya E. 2008. The pollination ecology of the late-successional tree, Oroxylum indicum (Bignoniaceae) in Thailand. Journal of Tropical Ecology, 24(5): 477−484. doi: 10.1017/S026646740800521X
    Tan CW, Yang X, Anderson DE, Wang LF. 2021. Bat virome research: the past, the present and the future. Current Opinion in Virology, 49: 68−80. doi: 10.1016/j.coviro.2021.04.013
    Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, et al. 2022. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature, 604(7905): 330−336. doi: 10.1038/s41586-022-04532-4
    Thavry H, Cappelle J, Bumrungsri S, Thona L, Furey NM. 2017. The diet of the cave nectar bat (Eonycteris spelaea dobson) suggests it pollinates economically and ecologically significant plants in southern cambodia. Zoological Studies, 56: e17.
    Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, et al. 2009. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathogens, 5(7): e1000536. doi: 10.1371/journal.ppat.1000536
    Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications, 12(1): 972. doi: 10.1038/s41467-021-21240-1
    Wang N, Li SY, Yang XL, Huang HM, Zhang YJ, Guo H, et al. 2018. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sinica, 33(1): 104−107. doi: 10.1007/s12250-018-0012-7
    Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM. 2016. First direct evidence of long-distance seasonal movements and hibernation in a Migratory Bat. Scientific Reports, 6: 34585. doi: 10.1038/srep34585
    Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
    Worton BJ. 1989. Kernel methods for estimating the utilization distribution in home‐range studies. Ecology, 70(1): 164−168. doi: 10.2307/1938423
    Yadav PD, Shete-Aich A, Nyayanit DA, Pardeshi P, Majumdar T, Balasubramanian R, et al. 2020. Detection of coronaviruses in Pteropus & Rousettus species of bats from different States of India. Indian Journal of Medical Research, 151(2-3): 226−235.
    Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, et al. 2019. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nature Microbiology, 4(3): 390−395. doi: 10.1038/s41564-018-0328-y
    Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, et al. 2017. Genetically diverse filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerging Infectious Diseases, 23(3): 482−486. doi: 10.3201/eid2303.161119
    Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, et al. 2017. Are declining populations of wild geese in China 'prisoners' of their natural habitats?. Current Biology, 27(10): R376−R377. doi: 10.1016/j.cub.2017.04.037
    Zhou H, Chen X, Hu T, Li J, Song H, Liu YR, et al. 2020a. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30(11): 2196−2203.e3. doi: 10.1016/j.cub.2020.05.023
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
  • ZR-2021-480 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (3385) PDF downloads(342) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint