Turn off MathJax
Article Contents
Min Li, Wen-Ting Chen, Qi-Lin Zhang, Min Liu, Cheng-Wei Xing, Ya Cao, Fang-Zhen Luo, Ming-Long Yuan. Mitochondrial phylogenomics provides insights into the phylogeny and evolution of spiders (Arthropoda: Araneae). Zoological Research, 2022, 43(4): 566-584. doi: 10.24272/j.issn.2095-8137.2021.418
Citation: Min Li, Wen-Ting Chen, Qi-Lin Zhang, Min Liu, Cheng-Wei Xing, Ya Cao, Fang-Zhen Luo, Ming-Long Yuan. Mitochondrial phylogenomics provides insights into the phylogeny and evolution of spiders (Arthropoda: Araneae). Zoological Research, 2022, 43(4): 566-584. doi: 10.24272/j.issn.2095-8137.2021.418

Mitochondrial phylogenomics provides insights into the phylogeny and evolution of spiders (Arthropoda: Araneae)

doi: 10.24272/j.issn.2095-8137.2021.418
#Authors contributed equally to this work
Funds:  This study was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0302), Natural Science Foundation of Gansu Province (20JR5RA252), and Innovation and Entrepreneurship Project of Lanzhou University (20210010020, 20210010002)
More Information
  • Corresponding author: E-mail: yuanml@lzu.edu.cn
  • Received Date: 2022-02-27
  • Accepted Date: 2022-05-25
  • Published Online: 2022-05-27
  • Spiders are among the most varied terrestrial predators, with highly diverse morphology, ecology, and behavior. Morphological and molecular data have greatly contributed to advances in the phylogeny and evolutionary dynamics of spiders. Here, we performed comprehensive mitochondrial phylogenomics analysis on 78 mitochondrial genomes (mitogenomes) representing 29 families; of these, 23 species from eight families were newly generated. Mesothelae retained the same gene arrangement as the arthropod ancestor (Limulus polyphemus), while Opisthothelae showed extensive rearrangement, with 12 rearrangement types in transfer RNAs (tRNAs) and control region. Most spider tRNAs were extremely truncated and lacked typical dihydrouridine or TΨC arms, showing high tRNA structural diversity; in particular, trnS1 exhibited anticodon diversity across the phylogeny. The evolutionary rates of mitochondrial genes were potentially associated with gene rearrangement or truncated tRNAs. Both mitogenomic sequences and rearrangements possessed phylogenetic characteristics, providing a robust backbone for spider phylogeny, as previously reported. The monophyly of suborder, infraorder, retrolateral tibial apophysis clade, and families (except for Pisauridae) was separately supported, and high-level relationships were resolved as (Mesothelae, (Mygalomorphae, (Entelegynae, (Synspermiata, Hypochilidae)))). The phylogenetic positions of several families were also resolved (e.g., Eresidae, Oecobiidae and Titanoecidae). Two reconstructions of ancestral web type obtained almost identical results, indicating that the common ancestor of spiders likely foraged using a silk-lined burrow. This study, the largest mitochondrial phylogenomics analysis of spiders to date, highlights the usefulness of mitogenomic data not only for providing efficient phylogenetic signals for spider phylogeny, but also for characterizing trait diversification in spider evolution.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Abascal F, Posada D, Zardoya R. 2012. The evolution of the mitochondrial genetic code in arthropods revisited. Mitochondrial DNA, 23(2): 84−91. doi: 10.3109/19401736.2011.653801
    Arita M, Suematsu T, Osanai A, Inaba T, Kamiya H, Kita K, et al. 2006. An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu. Nucleic Acids Research, 34(18): 5291−5299. doi: 10.1093/nar/gkl526
    Arribas P, Andújar C, Lourdes Moraza M, Linard B, Emerson BC, Vogler AP. 2020. Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Molecular Biology and Evolution, 37(3): 683−694. doi: 10.1093/molbev/msz255
    Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. 2014. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biology and Evolution, 6(12): 3326−3343. doi: 10.1093/gbe/evu265
    Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, et al. 2022. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Molecular Biology and Evolution, 39(2): msac021. doi: 10.1093/molbev/msac021
    Ballesteros JA, Sharma PP. 2019. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Systematic Biology, 68(6): 896−917. doi: 10.1093/sysbio/syz011
    Bayer S, Schönhofer AL. 2013. Phylogenetic relationships of the spider family psechridae inferred from molecular data, with comments on the lycosoidea (Arachnida: Araneae). Invertebrate Systematics, 27(1): 53−80. doi: 10.1071/IS12017
    Bernt M, Braband A, Schierwater B, Stadler PF. 2013a. Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69(2): 328−338. doi: 10.1016/j.ympev.2012.10.020
    Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. 2013b. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. 2007. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics, 23(21): 2957−2958. doi: 10.1093/bioinformatics/btm468
    Blackledge TA, Kuntner M, Agnarsson I. 2011. The form and function of spider orb webs: evolution from silk to ecosystems. Advances in Insect Physiology, 41: 175−262.
    Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, et al. 2009. Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America, 106(13): 5229−5234. doi: 10.1073/pnas.0901377106
    Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology, 24(15): 1765−1771. doi: 10.1016/j.cub.2014.06.034
    Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767−1780. doi: 10.1093/nar/27.8.1767
    Boore JL, Lavrov DV, Brown WM. 1998. Gene translocation links insects and crustaceans. Nature, 392(6677): 667−668. doi: 10.1038/33577
    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
    Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59: 95−117. doi: 10.1146/annurev-ento-011613-162007
    Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods in Molecular Biology, 1962: 1−14. doi: 10.1007/978-1-4939-9173-0_1
    Chen YX, Chen YS, Shi CM, Huang ZB, Zhang Y, Li SK, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7(1): gix120.
    Coddington JA. 2005. Phylogeny and classification of spiders. In: Ubick D, Paquin P, Cushing PE, Roth V. Spiders of North America: An Identification Manual. Washington: American Arachnological Society, 18–24.
    Coddington JA, Agnarsson I, Hamilton CA, Bond JE. 2019. Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ, 7: e6703. doi: 10.7717/peerj.6703
    Coddington JA, Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics, 22: 565−592. doi: 10.1146/annurev.es.22.110191.003025
    Coyle FA, Ketner ND. 1990. Observations on the prey and prey capture behaviour of the funnelweb mygalomorph spider genus Ischnothele (Araneae, Dipluridae). Bulletin of the British Arachnological Society, 8(4): 97−104.
    Dai YT, Li H, Jiang P, Song F, Ye Z, Yuan XQ, et al. 2012. Sequence and organization of the mitochondrial genome of an urostylidid bug, Urochela quadrinotata Reuter (Hemiptera: Urostylididae). Entomotaxonomia, 34(4): 613−623. (in Chinese)
    Dávila S, Piñero D, Bustos P, Cevallos MA, Dávila G. 2005. The mitochondrial genome sequence of the scorpion Centruroides limpidus (Karsch 1879) (Chelicerata; Arachnida). Gene, 360(2): 92−102. doi: 10.1016/j.gene.2005.06.008
    Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4): e18.
    Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Griswold CE, Scharff N, et al. 2017. Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics, 33(3): 221−250. doi: 10.1111/cla.12165
    Dimitrov D, Hormiga G. 2021. Spider diversification through space and time. Annual Review of Entomology, 66: 225−241. doi: 10.1146/annurev-ento-061520-083414
    Dimitrov D, Lopardo L, Giribet G, Arnedo MA, Álvarez-Padilla F, Hormiga G. 2012. Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society B:Biological Sciences, 279(1732): 1341−1350. doi: 10.1098/rspb.2011.2011
    Dowton M, Campbell NJH. 2001. Intramitochondrial recombination—is it why some mitochondrial genes sleep around?. Trends in Ecology and Evolution, 16(6): 269−271. doi: 10.1016/S0169-5347(01)02182-6
    Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8): 1969−1973. doi: 10.1093/molbev/mss075
    Duchêne AM, Pujol C, Maréchal-Drouard L. 2009. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Current Genetics, 55(1): 1−18. doi: 10.1007/s00294-008-0223-9
    Eberhard W. 2020. Spider Webs: Behavior, Function, and Evolution. Chicago: University of Chicago Press.
    Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, et al. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28(9): 1489−1497.e5. doi: 10.1016/j.cub.2018.03.064
    Foelix RF. 2011. Biology of Spiders. 3rd ed. New York: Oxford University Press.
    Garb JE. 2013. Spider silk: an ancient biomaterial for the 21st century. In: Penney D. Spider Research in the 21st Century: Trends and Perspectives. Manchester: Siri Scientific Press, 252–281.
    Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, et al. 2016. Spider phylogenomics: untangling the spider tree of life. PeerJ, 4: e1719. doi: 10.7717/peerj.1719
    Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C. 2012. Structure of transfer RNAs: similarity and variability. WIREs RNA, 3(1): 37−61. doi: 10.1002/wrna.103
    Gissi C, Iannelli F, Pesole G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101(4): 301−320. doi: 10.1038/hdy.2008.62
    Greco G, Pugno NM. 2021. How spiders hunt heavy prey: the tangle web as a pulley and spider's lifting mechanics observed and quantified in the laboratory. Journal of the Royal Society Interface, 18(175): 20200907. doi: 10.1098/rsif.2020.0907
    Griswold CE, Coddington JA, Platnick NI, Forster RR. 1999. Towards a phylogeny of entelegyne spiders (Araneae, Araneomorphae, Entelegynae). The Journal of Arachnology, 27(1): 53−63.
    Griswold CE, Ramirez MJ, Coddington JA, Platnick NI. 2005. Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences, 56(S2): 1−324.
    Haran J, Timmermans MJTN, Vogler AP. 2013. Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Molecular Phylogenetics and Evolution, 67(1): 156−166. doi: 10.1016/j.ympev.2012.12.022
    Haupt J. 2005. Taxonomy of spiders. Toxin Reviews, 24(3-4): 249−256. doi: 10.1080/07313830500236101
    Hawlena D, Schmitz OJ. 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences of the United States of America, 107(35): 15503−15507. doi: 10.1073/pnas.1009300107
    Hedin M, Derkarabetian S, Alfaro A, Ramírez MJ, Bond JE. 2019. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ, 7: e6864. doi: 10.7717/peerj.6864
    Hormiga G, Griswold CE. 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annual Review of Entomology, 59: 487−512. doi: 10.1146/annurev-ento-011613-162046
    Huang DY, Hormiga G, Cai CY, Su YT, Yin ZJ, Xia FY, et al. 2018. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nature Ecology & Evolution, 2(4): 623−627.
    Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. 2019. A fast likelihood method to reconstruct and visualize ancestral scenarios. Molecular Biology and Evolution, 36(9): 2069−2085. doi: 10.1093/molbev/msz131
    Jeyaprakash A, Hoy MA. 2007. The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene, 391(1-2): 264−274. doi: 10.1016/j.gene.2007.01.012
    Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, et al. 2012a. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Research, 40(7): 2833−2845. doi: 10.1093/nar/gkr1131
    Jühling F, Pütz J, Florentz C, Stadler PF. 2012b. Armless mitochondrial tRNAs in Enoplea (Nematoda). RNA Biology, 9(9): 1161−1166. doi: 10.4161/rna.21630
    Jühling T, Duchardt-Ferner E, Bonin S, Wöhnert J, Pütz J, Florentz C, et al. 2018. Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Research, 46(17): 9170–9180.
    Kallal RJ, Kulkarni SS, Dimitrov D, Benavides LR, Arnedo MA, Giribet G, et al. 2021. Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. Cladistics, 37(3): 298−316. doi: 10.1111/cla.12439
    King GF, Hardy MC. 2013. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annual Review of Entomology, 58: 475−496. doi: 10.1146/annurev-ento-120811-153650
    Kishino H, Hasegawa M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution, 29(2): 170−179. doi: 10.1007/BF02100115
    Kovoor J. 1987. Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W. Ecophysiology of Spiders. Berlin, Heidelberg: Springer, 160–186.
    Kulkarni S, Kallal RJ, Wood H, Dimitrov D, Giribet G, Hormiga G. 2021. Interrogating genomic-scale data to resolve recalcitrant nodes in the spider Tree of Life. Molecular Biology and Evolution, 38(3): 891−903. doi: 10.1093/molbev/msaa251
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    Kumar V, Tyagi K, Chakraborty R, Prasad P, Kundu S, Tyagi I, et al. 2020. The complete mitochondrial genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis. Scientific Reports, 10(1): 74−84. doi: 10.1038/s41598-019-57065-8
    Kumazawa Y, Miura S, Yamada C, Hashiguchi Y. 2014. Gene rearrangements in gekkonid mitochondrial genomes with shuffling, loss, and reassignment of tRNA genes. BMC Genomics, 15(1): 930. doi: 10.1186/1471-2164-15-930
    Kumazawa Y, Ota H, Nishida M, Ozawa T. 1998. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics, 150(1): 313−329. doi: 10.1093/genetics/150.1.313
    Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
    Lavrov DV, Brown WM, Boore JL. 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13738–13742.
    Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, et al. 2013. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Molecular Biology and Evolution, 30(4): 865−880. doi: 10.1093/molbev/mss274
    Li F, Lv YY, Wen ZY, Bian C, Zhang XH, Guo ST, et al. 2021. The complete mitochondrial genome of the intertidal spider (Desis jiaxiangi) provides novel insights into the adaptive evolution of the mitogenome and the evolution of spiders. BMC Ecology and Evolution, 21(1): 72. doi: 10.1186/s12862-021-01803-y
    Li H, Leavengood JM, Chapman EG, Burkhardt D, Song F, Jiang P, et al. 2017. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proceedings of the Royal Society B:Biological Sciences, 284(1862): 20171223. doi: 10.1098/rspb.2017.1223
    Lonergan KM, Gray MW. 1993. Predicted editing of additional transfer RNAs in Acathamoeba castellanii mitochondria. Nucleic Acids Research, 21(18): 4402. doi: 10.1093/nar/21.18.4402
    Lorenz C, Lünse CE, Mörl M. 2017. tRNA modifications: impact on structure and thermal adaptation. Biomolecules, 7(2): 35.
    Lozano-Fernandez J, Tanner AR, Giacomelli M, Carton R, Vinther J, Edgecombe GD, et al. 2019. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 10(1): 2295. doi: 10.1038/s41467-019-10244-7
    Lü L, Cai CY, Zhang X, Newton AF, Thayer MK, Zhou HZ. 2020. Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions. Current Zoology, 66(4): 435−444. doi: 10.1093/cz/zoz053
    Ludwig L, Barbour MA, Guevara J, Avilés L, González AL. 2018. Caught in the web: spider web architecture affects prey specialization and spider-prey stoichiometric relationships. Ecology and Evolution, 8(13): 6449−6462. doi: 10.1002/ece3.4028
    Lunt DH, Hyman BC. 1997. Animal mitochondrial DNA recombination. Nature, 387(6630): 247. doi: 10.1038/387247a0
    Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ. 2020. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biological Reviews, 95(1): 184−217. doi: 10.1111/brv.12559
    Masta SE, Boore JL. 2004. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21(5): 893−902. doi: 10.1093/molbev/msh096
    Masta SE, Boore JL. 2008. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Molecular Biology and Evolution, 25(5): 949−959. doi: 10.1093/molbev/msn051
    Masta SE, McCall A, Longhorn SJ. 2010. Rare genomic changes and mitochondrial sequences provide independent support for congruent relationships among the sea spiders (Arthropoda, Pycnogonida). Molecular Phylogenetics and Evolution, 57(1): 59−70. doi: 10.1016/j.ympev.2010.06.020
    Miller JA, Carmichael A, Ramírez MJ, Spagna JC, Haddad CR, Řezáč M, et al. 2010a. Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution, 55(3): 786−804. doi: 10.1016/j.ympev.2010.02.021
    Miller MA, Pfeiffer WT, Schwartz T. 2010b. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE). New Orleans: IEEE, 1–8.
    Morley RJ. 2011. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In: Bush M, Flenley J, Gosling W. Tropical Rainforest Responses to Climatic Change. 2nd ed. Berlin: Springer, 1–34.
    Ohtsuki T, Watanabe YI, Takemoto C, Kawai G, Ueda T, Kita K, et al. 2001. An "elongated" translation elongation factor Tu for truncated tRNAs in nematode mitochondria. Journal of Biological Chemistry, 276(24): 21571−21577. doi: 10.1074/jbc.M011118200
    Paradis E. 2012. Analysis of Phylogenetics and Evolution with R. 2nd ed. New York: Springer.
    Penney D, Selden PA. 2002. The oldest linyphiid spider, in Lower Cretaceous Lebanese amber (Araneae, Linyphiidae, Linyphiinae). The Journal of Arachnology, 30(3): 487−493. doi: 10.1636/0161-8202(2002)030[0487:TOLSIL]2.0.CO;2
    Piacentini LN, Ramírez MJ. 2019. Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Molecular Phylogenetics and Evolution, 136: 227−240. doi: 10.1016/j.ympev.2019.04.004
    Platnick NI, Gertsch WJ. 1976. The Suborders of Spiders: a Cladistic Analysis (Arachnida, Araneae). New York: American Museum of Natural History.
    Polotow D, Carmichael A, Griswold CE. 2015. Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). Invertebrate Systematics, 29(2): 124−163. doi: 10.1071/IS14041
    Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. 2019. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics, 20(1): 665. doi: 10.1186/s12864-019-6026-1
    Qiu Y, Song DX, Zhou KY, Sun HY. 2005. The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. Journal of Molecular Evolution, 60(1): 57−71. doi: 10.1007/s00239-004-0010-2
    Ramírez MJ. 2014. The morphology and phylogeny of Dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History, 2014(390): 1−374.
    Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, et al. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463(7284): 1079−1083. doi: 10.1038/nature08742
    Ren Y, Yu MJ, Low WY, Ruhlman TA, Hajrah NH, El Omri A, et al. 2020. Nucleotide substitution rates of diatom plastid encoded protein genes are positively correlated with genome architecture. Scientific Reports, 10(1): 14358. doi: 10.1038/s41598-020-71473-1
    Revell LJ. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2): 217−223. doi: 10.1111/j.2041-210X.2011.00169.x
    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539−542. doi: 10.1093/sysbio/sys029
    San Mauro D, Gower DJ, Zardoya R, Wilkinson M. 2006. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Molecular Biology and Evolution, 23(1): 227−234. doi: 10.1093/molbev/msj025
    Schäffer S, Koblmüller S, Klymiuk I, Thallinger GG. 2018. The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Scientific Reports, 8(1): 7558. doi: 10.1038/s41598-018-25981-w
    Segovia R, Pett W, Trewick S, Lavrov DV. 2011. Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (phylum Onychophora). Molecular Biology and Evolution, 28(10): 2873−2881. doi: 10.1093/molbev/msr113
    Selden PA. 1996. First fossil mesothele spider, from the Carboniferous of France. Revue suisse de Zoologie, 2: 585−596.
    Selden PA. 2002. First British mesozoic spider, from cretaceous amber of the isle of wight, southern England. Palaeontology, 45(5): 973−983. doi: 10.1111/1475-4983.00271
    Selden PA, Gall JC. 1992. A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology, 35: 211−235.
    Selden PA, Penney D. 2010. Fossil spiders. Biological Reviews, 85(1): 171−206. doi: 10.1111/j.1469-185X.2009.00099.x
    Selden PA, Shear WA, Bonamo PM. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology, 34: 241−281.
    Sensenig A, Agnarsson I, Blackledge TA. 2010. Behavioural and biomaterial coevolution in spider orb webs. Journal of Evolutionary Biology, 23(9): 1839−1856. doi: 10.1111/j.1420-9101.2010.02048.x
    Shao LL, Li SQ. 2018. Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Molecular Phylogenetics and Evolution, 127: 146−155. doi: 10.1016/j.ympev.2018.05.026
    Shao RF, Campbell NJH, Barker SC. 2001. Numerous gene rearrangements in the mitochondrial genome of the Wallaby Louse, Heterodoxus macropus (Phthiraptera). Molecular Biology and Evolution, 18(5): 858−865. doi: 10.1093/oxfordjournals.molbev.a003867
    Shao RF, Dowton M, Murrell A, Barker SC. 2003. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology and Evolution, 20(10): 1612−1619. doi: 10.1093/molbev/msg176
    Shao RF, Mitani H, Barker SC, Takahashi M, Fukunaga M. 2005. Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite. Leptotrombidium pallidum. Journal of Molecular Evolution, 60(6): 764−773. doi: 10.1007/s00239-004-0226-1
    Sharma PP, Ballesteros JA, Santibáñez-López CE. 2021. What is an "Arachnid"? Consensus, consilience, and confirmation bias in the phylogenetics of chelicerata. Diversity, 13(11): 568. doi: 10.3390/d13110568
    Shi GH, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang MC, et al. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research, 37: 155−163. doi: 10.1016/j.cretres.2012.03.014
    Shi W, Miao XG, Kong XY. 2014. A novel model of double replications and random loss accounts for rearrangements in the mitogenome of Samariscus latus (Teleostei: Pleuronectiformes). BMC Genomics, 15: 352. doi: 10.1186/1471-2164-15-352
    Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51(3): 492−508. doi: 10.1080/10635150290069913
    Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16(8): 1114−1114. doi: 10.1093/oxfordjournals.molbev.a026201
    Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF. 2010. When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Systematic Entomology, 35(3): 429−448. doi: 10.1111/j.1365-3113.2009.00517.x
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    Strimmer K, Rambaut A. 2002. Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B:Biological Sciences, 269(1487): 137−142. doi: 10.1098/rspb.2001.1862
    Thao ML, Baumann L, Baumann P. 2004. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evolutionary Biology, 4: 25. doi: 10.1186/1471-2148-4-25
    Toft S. 2013. Nutritional aspects of spider feeding. In: Nentwig W. Spider Ecophysiology. Berlin, Heidelberg: Springer, 373–384.
    Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1): W232−W235. doi: 10.1093/nar/gkw256
    Tyagi K, Kumar V, Poddar N, Prasad P, Tyagi I, Kundu S, et al. 2020. The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae). International Journal of Biological Macromolecules, 146: 488−496. doi: 10.1016/j.ijbiomac.2020.01.014
    Vollrath F, Selden P. 2007. The role of behavior in the evolution of spiders, silks, and webs. Annual Review of Ecology, Evolution, and Systematics, 38: 819−846. doi: 10.1146/annurev.ecolsys.37.091305.110221
    Wang B, Dunlop JA, Selden PA, Garwood RJ, Shear WA, Müller P, et al. 2018. Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nature Ecology & Evolution, 2(4): 614−622.
    Wang Y, Li H, Wang P, Song F, Cai WZ. 2014. Comparative mitogenomics of plant bugs (Hemiptera: Miridae): identifying the AGG codon reassignments between serine and lysine. PLoS One, 9(7): e101375. doi: 10.1371/journal.pone.0101375
    Warren JM, Sloan DB. 2021. Hopeful monsters: unintended sequencing of famously malformed mite mitochondrial tRNAs reveals widespread expression and processing of sense–antisense pairs. NAR Genomics and Bioinformatics, 3(1): lqaa111. doi: 10.1093/nargab/lqaa111
    Watanabe YI, Suematsu T, Ohtsuki T. 2014. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Frontiers in Genetics, 5: 109.
    Wende S, Platzer EG, Jühling F, Pütz J, Florentz C, Stadler PF, et al. 2014. Biological evidence for the world's smallest tRNAs. Biochimie, 100: 151−158. doi: 10.1016/j.biochi.2013.07.034
    Weng ML, Blazier JC, Govindu M, Jansen RK. 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molecular Biology and Evolution, 31(3): 645−659. doi: 10.1093/molbev/mst257
    Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, et al. 2017. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33(6): 574−616. doi: 10.1111/cla.12182
    Wolfson AD, Khvorova AM, Sauter C, Florentz C, Giegé R. 1999. Mimics of yeast tRNAAsp and their recognition by aspartyl-tRNA synthetase. Biochemistry, 38(37): 11926−11932. doi: 10.1021/bi9908383
    World Spider Catalog. 2022. World spider catalog. Version 23.0. Natural History Museum Bern,http://wsc.nmbe.ch.
    Xia XH. 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30(7): 1720−1728. doi: 10.1093/molbev/mst064
    Xin X, Liu FX, Chen J, Ono H, Li DQ, Kuntner M. 2015. A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae). ZooKeys, 488: 121−151. doi: 10.3897/zookeys.488.8726
    Xu W, Jameson D, Tang B, Higgs PG. 2006. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Journal of Molecular Evolution, 63(3): 375−392. doi: 10.1007/s00239-005-0246-5
    Xue XF, Deng W, Qu SX, Hong XY, Shao RF. 2018. The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost?. BMC Genomics, 19(1): 466. doi: 10.1186/s12864-018-4868-6
    Xue XF, Guo JF, Dong Y, Hong XY, Shao RF. 2016. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Scientific Reports, 6: 18920. doi: 10.1038/srep18920
    Yang ZH. 2007. PAML 4: phylogenetic analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    Yokobori SI, Ueda T, Feldmaier-Fuchs G, Pääbo S, Ueshima R, Kondow A, et al. 1999. Complete DNA sequence of the mitochondrial genome of the Ascidian Halocynthia roretzi (Chordata, Urochordata). Genetics, 153(4): 1851−1862. doi: 10.1093/genetics/153.4.1851
    Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ. 2010. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics, 11: 597. doi: 10.1186/1471-2164-11-597
    Yuan ML, Zhang LJ, Zhang QL, Zhang L, Li M, Wang XT, et al. 2020. Mitogenome evolution in ladybirds: potential association with dietary adaptation. Ecology and Evolution, 10(2): 1042−1053. doi: 10.1002/ece3.5971
    Yuan ML, Zhang QL, Zhang L, Guo ZL, Liu YJ, Shen YY, et al. 2016. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 104: 99−111. doi: 10.1016/j.ympev.2016.08.002
    Zhang B, Havird JC, Wang ED, Lv JL, Xu XN. 2021. Massive gene rearrangement in mitogenomes of phytoseiid mites. International Journal of Biological Macromolecules, 186: 33−39. doi: 10.1016/j.ijbiomac.2021.07.011
    Zhang JF, Kan XZ, Miao GP, Hu SJ, Sun Q, Tian WD. 2020. qMGR: a new approach for quantifying mitochondrial genome rearrangement. Mitochondrion, 52: 20−23. doi: 10.1016/j.mito.2020.02.004
    Zwick A, Regier JC, Zwickl DJ. 2012. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid aodels. PLoS One, 7(11): e47450. doi: 10.1371/journal.pone.0047450
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (658) PDF downloads(143) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint