Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Min-Sheng Peng, Jian-Bo Li, Zheng-Fei Cai, Hang Liu, Xiaolu Tang, Ruochen Ying, Jia-Nan Zhang, Jia-Jun Tao, Ting-Ting Yin, Tao Zhang, Jing-Yang Hu, Ru-Nian Wu, Zhong-Yin Zhou, Zhi-Gang Zhang, Li Yu, Yong-Gang Yao, Zheng-Li Shi, Xue-Mei Lu, Jian Lu, Ya-Ping Zhang. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zoological Research, 2021, 42(6): 834-844. doi: 10.24272/j.issn.2095-8137.2021.334
Citation: Min-Sheng Peng, Jian-Bo Li, Zheng-Fei Cai, Hang Liu, Xiaolu Tang, Ruochen Ying, Jia-Nan Zhang, Jia-Jun Tao, Ting-Ting Yin, Tao Zhang, Jing-Yang Hu, Ru-Nian Wu, Zhong-Yin Zhou, Zhi-Gang Zhang, Li Yu, Yong-Gang Yao, Zheng-Li Shi, Xue-Mei Lu, Jian Lu, Ya-Ping Zhang. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zoological Research, 2021, 42(6): 834-844. doi: 10.24272/j.issn.2095-8137.2021.334

The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks

doi: 10.24272/j.issn.2095-8137.2021.334
#Authors contributed equally to this work
Funds:  This work was supported by the National Key Research and Development Projects of the Ministry of Science and Technology of China, National Key Research and Development Program of China (2021YFC0863300), Ministry of Agriculture of China (2016ZX08009003-006), Key Program of Chinese Academy of Sciences (KJZD-SW-L11), and Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding)
More Information
  • Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Armero A, Berthet N, Avarre JC. 2021. Intra-host diversity of SARS-Cov-2 should not be neglected: case of the state of Victoria, Australia. Viruses, 13(1): 133. doi: 10.3390/v13010133
    Banerjee A, Doxey AC, Mossman K, Irving AT. 2021. Unraveling the zoonotic origin and transmission of SARS-CoV-2. Trends in Ecology & Evolution, 36(3): 180−184.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455−477. doi: 10.1089/cmb.2012.0021
    Boni MF, Lemey P, Jiang XW, Lam TTY, Perry BW, Castoe TA, et al. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology, 5(11): 1408−1417. doi: 10.1038/s41564-020-0771-4
    Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 104(37): 14616−14621. doi: 10.1073/pnas.0704665104
    Campanella JJ, Bitincka L, Smalley J. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 4: 29. doi: 10.1186/1471-2105-4-29
    Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, 37(1): 291−294. doi: 10.1093/molbev/msz189
    Dicken SJ, Murray MJ, Thorne LG, Reuschl AK, Forrest C, Ganeshalingham M, et al. 2021. Characterisation of B. 1.1. 7 and pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv, doi: 10.1101/2021.03.22.436468.
    Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. Journal of Virology, 84(21): 11336−11349. doi: 10.1128/JVI.00650-10
    Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv preprint, arXiv: 1207.3907.
    Ge XY, Li JL, Yang XL, Chmura AA, Zhu GJ, Epstein JH, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477): 535−538. doi: 10.1038/nature12711
    Gong Z, Zhu JW, Li CP, Jiang S, Ma LN, Tang BX, et al. 2020. An online coronavirus analysis platform from the National Genomics Data Center. Zoological Research, 41(6): 705−708. doi: 10.24272/j.issn.2095-8137.2020.065
    Green RE, Briggs AW, Krause J, Prüfer K, Burbano HA, Siebauer M, et al. 2009. The neandertal genome and ancient DNA authenticity. The EMBO Journal, 28(17): 2494−2502. doi: 10.1038/emboj.2009.222
    Gryseels S, De Bruyn L, Gyselings R, Calvignac-Spencer S, Leendertz FH, Leirs H. 2021. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Review, 51(2): 272−292. doi: 10.1111/mam.12225
    Guo H, Hu B, Si HR, Zhu Y, Zhang W, Li B, et al. 2021. Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerging Microbes & Infections, 10(1): 1507−1514.
    He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, et al. 2014. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. Journal of Virology, 88(12): 7070−7082. doi: 10.1128/JVI.00631-14
    Hu B, Guo H, Zhou P, Shi ZL. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3): 141−154. doi: 10.1038/s41579-020-00459-7
    Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, et al. 2018. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerging Microbes & Infections, 7(1): 1−10.
    Hu JY, Hao ZQ, Frantz L, Wu SF, Chen W, Jiang YF, et al. 2020. Genomic consequences of population decline in critically endangered pangolins and their demographic histories. National Science Review, 7(4): 798−814. doi: 10.1093/nsr/nwaa031
    Hul V, Delaune D, Karlsson EA, Hassanin A, Tey PO, Baidaliuk A, et al. 2021. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv, doi: 10.1101/2021.01.26.428212.
    Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 68(4): 594−606. doi: 10.1093/sysbio/syy086
    Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4): 1160−1166. doi: 10.1093/bib/bbx108
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    Lacroix A, Duong V, Hul V, San S, Davun H, Omaliss K, et al. 2017. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infection, Genetics and Evolution, 48: 10−18. doi: 10.1016/j.meegid.2016.11.029
    Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815): 282−285. doi: 10.1038/s41586-020-2169-0
    Latinne A, Hu B, Olival KJ, Zhu G, Zhang L, Li H, et al. 2020. Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 11(1): 4235. doi: 10.1038/s41467-020-17687-3
    Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi HW, Wong BHL, et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America, 102(39): 14040−14045. doi: 10.1073/pnas.0506735102
    Lee J, Hughes T, Lee MH, Field H, Rovie-Ryan JJ, Sitam FT, et al. 2020. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. EcoHealth, 17(3): 406−418. doi: 10.1007/s10393-020-01503-x
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10): 1674−1676. doi: 10.1093/bioinformatics/btv033
    Li H. 2014. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30(20): 2843−2851. doi: 10.1093/bioinformatics/btu356
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    Li LL, Wang JL, Ma XH, Sun XM, Li JS, Yang XF, et al. 2021. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerging Microbes & Infections, 10(1): 1683−1690.
    Li T, Tang X, Wu C, Yao X, Wang Y, Lu X, et al. 2020. The use of SARS-CoV-2-related coronaviruses from bats and pangolins to polarize mutations in SARS-Cov-2. Science China Life Sciences, 63(10): 1608−1611. doi: 10.1007/s11427-020-1764-2
    Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748): 676−679. doi: 10.1126/science.1118391
    Lin XD, Wang W, Hao ZY, Wang ZX, Guo WP, Guan XQ, et al. 2017. Extensive diversity of coronaviruses in bats from China. Virology, 507: 1−10. doi: 10.1016/j.virol.2017.03.019
    Liu P, Chen W, Chen JP. 2019. Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses, 11(11): 979. doi: 10.3390/v11110979
    Liu P, Jiang JZ, Wan XF, Hua Y, Li L, Zhou J, et al. 2020. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?. PLoS Pathogens, 16(5): e1008421. doi: 10.1371/journal.ppat.1008421
    Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, et al. 1999. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of Virology, 73(1): 152−160. doi: 10.1128/JVI.73.1.152-160.1999
    Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224): 565−574. doi: 10.1016/S0140-6736(20)30251-8
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1): vev003.
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1): 10−12. doi: 10.14806/ej.17.1.200
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T, Fujii M, et al. 2020. Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerging Infectious Diseases, 26(12): 3025−3029. doi: 10.3201/eid2612.203386
    Nash HC, Wirdateti, Low GW, Choo SW, Chong JL, Semiadi G, et al. 2018. Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia. Conservation Genetics, 19(5): 1083−1095. doi: 10.1007/s10592-018-1080-9
    Nie J, Li Q, Zhang L, Cao Y, Zhang Y, Li T, et al. 2021. Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discovery, 7(1): 21. doi: 10.1038/s41421-021-00256-3
    Niu S, Wang J, Bai B, Wu L, Zheng A, Chen Q, et al. 2021. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. The EMBO Journal, 40(16): e107786.
    Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1): 1620. doi: 10.1038/s41467-020-15562-9
    Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. 2020. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79: 104212. doi: 10.1016/j.meegid.2020.104212
    Qin E, Zhu Q, Yu M, Fan B, Chang G, Si B, et al. 2003. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Chinese Science Bulletin, 48(10): 941−948. doi: 10.1007/BF03184203
    Qu XX, Hao P, Song XJ, Jiang SM, Liu YX, Wang PG, et al. 2005. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. Journal of Biological Chemistry, 280(33): 29588−29595. doi: 10.1074/jbc.M500662200
    Ren W, Qu X, Li W, Han Z, Yu M, Zhou P, et al. 2008. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. Journal of Virology, 82(4): 1899−1907. doi: 10.1128/JVI.01085-07
    Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. 2011. Integrative genomics viewer. Nature Biotechnology, 29(1): 24−26. doi: 10.1038/nbt.1754
    Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2): 461−464.
    Spyrou MA, Bos KI, Herbig A, Krause J. 2019. Ancient pathogen genomics as an emerging tool for infectious disease research. Nature Reviews Genetics, 20(6): 323−340. doi: 10.1038/s41576-019-0119-1
    Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. 2020. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends in Molecular Medicine, 26(5): 483−495. doi: 10.1016/j.molmed.2020.02.008
    Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. , 2020. On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6): 1012–1023.
    Tao Y, Tong S. 2019. Complete genome sequence of a severe acute respiratory syndrome-related coronavirus from Kenyan bats. Microbiology Resource Announcements, 8(28): e00548−19.
    Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications, 12(1): 972. doi: 10.1038/s41467-021-21240-1
    Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7): e00127−20.
    Wang Y, Wang D, Zhang L, Sun W, Zhang Z, Chen W, et al. 2021. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Medicine, 13(1): 30. doi: 10.1186/s13073-021-00847-5
    Wen S, Sun C, Zheng H, Wang L, Zhang H, Zou L, et al. 2020. High-coverage SARS-CoV-2 genome sequences acquired by target capture sequencing. Journal of Medical Virology, 92(10): 2221−2226. doi: 10.1002/jmv.26116
    WHO. 2021. WHO-convened global study of origins of SARS-CoV-2: China part. Geneva: WHO, 120.
    Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483): 1260−1263. doi: 10.1126/science.abb2507
    Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798): 265−269. doi: 10.1038/s41586-020-2008-3
    Xia X. 2018. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35(6): 1550−1552. doi: 10.1093/molbev/msy073
    Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. 2020. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 583(7815): 286−289. doi: 10.1038/s41586-020-2313-x
    Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    Zhang S, Qiao S, Yu J, Zeng J, Shan S, Tian L, et al. 2021. Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Nature Communications, 12(1): 1607. doi: 10.1038/s41467-021-21767-3
    Zhang T, Wu Q, Zhang Z. 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology, 30(7): 1346−1351.e2. doi: 10.1016/j.cub.2020.03.022
    Zhang YZ, Holmes EC. 2020. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell, 181(2): 223−227. doi: 10.1016/j.cell.2020.03.035
    Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. 2020a. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30(11): 2196−2203.e3. doi: 10.1016/j.cub.2020.05.023
    Zhou H, Ji J, Chen X, Bi Y, Li J, Wang Q, et al. 2021. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 184(17): 4380−4391.e14. doi: 10.1016/j.cell.2021.06.008
    Zhou P, Shi ZL. 2021. SARS-CoV-2 spillover events. Science, 371(6525): 120−122. doi: 10.1126/science.abf6097
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
  • ZR-2021-334 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (1890) PDF downloads(149) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint