Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhu Li, Yuan-Xiang Zhu, Li-Jun Gu, Ying Cheng. Understanding autism spectrum disorders with animal models: applications, insights, and perspectives. Zoological Research, 2021, 42(6): 800-824. doi: 10.24272/j.issn.2095-8137.2021.251
Citation: Zhu Li, Yuan-Xiang Zhu, Li-Jun Gu, Ying Cheng. Understanding autism spectrum disorders with animal models: applications, insights, and perspectives. Zoological Research, 2021, 42(6): 800-824. doi: 10.24272/j.issn.2095-8137.2021.251

Understanding autism spectrum disorders with animal models: applications, insights, and perspectives

doi: 10.24272/j.issn.2095-8137.2021.251
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (82071540) and Yunnan University (CZ21623201)
More Information
  • Corresponding author: E-mail: ycheng@ynu.edu.cn
  • Received Date: 2021-09-26
  • Accepted Date: 2021-11-04
  • Available Online: 2021-11-04
  • Publish Date: 2021-11-18
  • Autism spectrum disorder (ASD) is typically characterized by common deficits in social skills and repetitive/stereotyped behaviors. It is widely accepted that genetic and environmental factors solely or in combination cause ASD. However, the underlying pathogenic mechanism is unclear due to its highly heterogeneous nature. To better understand the pathogenesis of ASD, various animal models have been generated, which can be generally divided into genetic, environment-induced, and idiopathic animal models. In this review, we summarize the common animals used for ASD study and then discuss the applications, clinical insights, as well as challenges and prospects of current ASD animal models.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Abrahams BS, Geschwind DH. 2008. Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews Genetics, 9(5): 341−355. doi: 10.1038/nrg2346
    [2]
    Achilly NP, Wang W, Zoghbi HY. 2021. Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature, 592(7855): 596−600. doi: 10.1038/s41586-021-03369-7
    [3]
    Aguilar-Valles A, Matta-Camacho E, Khoutorsky A, Gkogkas C, Nader K, Lacaille JC, et al. 2015. Inhibition of group I metabotropic glutamate receptors reverses autistic-like phenotypes caused by deficiency of the translation repressor eiF4E binding protein 2. The Journal of Neuroscience, 35(31): 11125−11132. doi: 10.1523/JNEUROSCI.4615-14.2015
    [4]
    Ahmadiantehrani S, London SE. 2017. Bidirectional manipulation of mTOR signaling disrupts socially mediated vocal learning in juvenile songbirds. Proceedings of the National Academy of Sciences of the United States of America, 114(35): 9463−9468. doi: 10.1073/pnas.1701829114
    [5]
    Almeida LEF, Roby CD, Krueger BK. 2014. Increased BDNF expression in fetal brain in the valproic acid model of autism. Molecular and Cellular Neuroscience, 59: 57−62. doi: 10.1016/j.mcn.2014.01.007
    [6]
    Amir RE, Van den Veyver IB, Wan MM, Tran CQ, Francke U, Zoghbi HY. 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23(2): 185−188. doi: 10.1038/13810
    [7]
    Anagnostou E, Hansen R. 2011. Medical treatment overview: traditional and novel psycho-pharmacological and complementary and alternative medications. Current Opinion in Pediatrics, 23(6): 621−627. doi: 10.1097/MOP.0b013e32834cba3e
    [8]
    Antushevich H. 2020. Fecal microbiota transplantation in disease therapy. Clinica Chimica Acta, 503: 90−98. doi: 10.1016/j.cca.2019.12.010
    [9]
    Ariza J, Hurtado J, Rogers H, Ikeda R, Dill M, Steward C, et al. 2017. Maternal autoimmune antibodies alter the dendritic arbor and spine numbers in the infragranular layers of the cortex. PLoS One, 12(8): e0183443. doi: 10.1371/journal.pone.0183443
    [10]
    Banerjee A, Engineer CT, Sauls BL, Morales AA, Kilgard MP, Ploski JE. 2014. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Frontiers in Behavioral Neuroscience, 8: 387.
    [11]
    Baron CA, Tepper CG, Liu SY, Davis RR, Wang NJ, Schanen NC, et al. 2006. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Human Molecular Genetics, 15(6): 853−869. doi: 10.1093/hmg/ddl004
    [12]
    Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, et al. 2013. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Translational Psychiatry, 3(7): e278. doi: 10.1038/tp.2013.47
    [13]
    Bauman MD, Schumann CM. 2018. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Experimental Neurology, 299: 252−265. doi: 10.1016/j.expneurol.2017.07.021
    [14]
    Berg EL, Copping NA, Rivera JK, Pride MC, Careaga M, Bauman MD, et al. 2018. Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Research, 11(4): 587−601. doi: 10.1002/aur.1925
    [15]
    Bernaerts S, Boets B, Steyaert J, Wenderoth N, Alaerts K. 2020. Oxytocin treatment attenuates amygdala activity in autism: a treatment-mechanism study with long-term follow-up. Translational Psychiatry, 10(1): 383. doi: 10.1038/s41398-020-01069-w
    [16]
    Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. 2014. Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158(2): 263−276. doi: 10.1016/j.cell.2014.06.017
    [17]
    Bertero A, Liska A, Pagani M, Parolisi R, Masferrer ME, Gritti M, et al. 2018. Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in mouse and human. Brain, 141(7): 2055−2065. doi: 10.1093/brain/awy111
    [18]
    Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, et al. 2010. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. The Journal of Neuroscience, 30(6): 2115−2129. doi: 10.1523/JNEUROSCI.4517-09.2010
    [19]
    Bölte S, Girdler S, Marschik PB. 2019. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cellular and Molecular Life Sciences, 76(7): 1275−1297. doi: 10.1007/s00018-018-2988-4
    [20]
    Bourgeron T. 2015. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9): 551−563. doi: 10.1038/nrn3992
    [21]
    Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, et al. 2010. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proceedings of the National Academy of Sciences of the United States of America, 107(1): 448−453. doi: 10.1073/pnas.0907697107
    [22]
    Braunschweig D, Golub MS, Koenig CM, Qi LH, Pessah IN, Van de Water J, et al. 2012. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. Journal of Neuroimmunology, 252(1–2): 56–65.
    [23]
    Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, et al. 2021. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain, Behavior, and Immunity, 95: 269−286. doi: 10.1016/j.bbi.2021.03.025
    [24]
    Bringas ME, Carvajal-Flores FN, López-Ramírez TA, Atzori M, Flores G. 2013. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience, 241: 170−187. doi: 10.1016/j.neuroscience.2013.03.030
    [25]
    Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A, Kim HS, et al. 2013. Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proceedings of the National Academy of Sciences of the United States of America, 110(2): 725−730. doi: 10.1073/pnas.1214718110
    [26]
    Buffington SA, Dooling SW, Sgritta M, Noecker C, Murillo OD, Felice DF, et al. 2021. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell, 184(7): 1740−1756.e16. doi: 10.1016/j.cell.2021.02.009
    [27]
    Bunford N, Andics A, Kis A, Miklósi Á, Gácsi M. 2017. Canis familiaris as a model for non-invasive comparative neuroscience. Trends in Neurosciences, 40(7): 438−452. doi: 10.1016/j.tins.2017.05.003
    [28]
    Burket JA, Benson AD, Tang AH, Deutsch SI. 2013. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Research Bulletin, 96: 62−70. doi: 10.1016/j.brainresbull.2013.05.003
    [29]
    Cai DC, Wang ZW, Bo TT, Yan SY, Liu YL, Liu ZW, et al. 2020. MECP2 duplication causes aberrant GABA pathways, circuits and behaviors in transgenic monkeys: neural mappings to patients with autism. The Journal of Neuroscience, 40(19): 3799−3814. doi: 10.1523/JNEUROSCI.2727-19.2020
    [30]
    Calahorro F, Ruiz-Rubio M. 2011. Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invertebrate Neuroscience, 11(2): 73−83. doi: 10.1007/s10158-011-0126-1
    [31]
    Camacho J, Jones K, Miller E, Ariza J, Noctor S, Van de Water J, et al. 2014. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behavioural Brain Research, 266: 46−51. doi: 10.1016/j.bbr.2014.02.045
    [32]
    Cao W, Lin S, Xia QQ, Du YL, Yang Q, Zhang MY, et al. 2018. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron, 97(6): 1253−1260.e7. doi: 10.1016/j.neuron.2018.02.001
    [33]
    Carter MT, Nikkel SM, Fernandez BA, Marshall CR, Noor A, Lionel AC, et al. 2011. Hemizygous deletions on chromosome 1p21.3 involving the DPYD gene in individuals with autism spectrum disorder. Clinical Genetics, 80(5): 435−443. doi: 10.1111/j.1399-0004.2010.01578.x
    [34]
    Cast TP, Boesch DJ, Smyth K, Shaw AE, Ghebrial M, Chanda S. 2021. An autism-associated mutation impairs neuroligin-4 glycosylation and enhances excitatory synaptic transmission in human neurons. The Journal of Neuroscience, 41(3): 392−407. doi: 10.1523/JNEUROSCI.0404-20.2020
    [35]
    Chadman KK. 2017. Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opinion on Drug Discovery, 12(12): 1187−1194. doi: 10.1080/17460441.2017.1383982
    [36]
    Chan W, Kordeli E, Bennett V. 1993. 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. The Journal of Cell Biology, 123(6 Pt 1): 1463–1473.
    [37]
    Chareyron LJ, Lavenex PB, Amaral DG, Lavenex P. 2011. Stereological analysis of the rat and monkey amygdala. The Journal of Comparative Neurology, 519(16): 3218−3239. doi: 10.1002/cne.22677
    [38]
    Chen B, Liu YJ, Cai YR, Tang D, Xu SH, Gao P, et al. 2020. Hippocampus is more vulnerable to neural damages induced by repeated sevoflurane exposure in the second trimester than other brain areas. Acta Biochimica et Biophysica Sinica, 52(8): 864−874. doi: 10.1093/abbs/gmaa060
    [39]
    Chen Q, Ma ZX, Xia LB, Ye ZN, Liu BL, Ma TK, et al. 2020. A tree shrew model for steroid-associated osteonecrosis. Zoological Research, 41(5): 564−568. doi: 10.24272/j.issn.2095-8137.2020.061
    [40]
    Chen RZ, Akbarian S, Tudor M, Jaenisch R. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genetics, 27(3): 327−331. doi: 10.1038/85906
    [41]
    Chen YC, Yu JH, Niu YY, Qin DD, Liu HL, Li G, et al. 2017. Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell, 169(5): 945−955.e10. doi: 10.1016/j.cell.2017.04.035
    [42]
    Cheng Y, Chen DH. 2018. Fruit fly research in China. Journal of Genetics and Genomics, 45(11): 583−592. doi: 10.1016/j.jgg.2018.09.003
    [43]
    Cheng Y, Jin P. 2019. Dysfunction of habituation learning: a novel pathogenic paradigm of intellectual disability and autism spectrum disorder. Biological Psychiatry, 86(4): 253−254. doi: 10.1016/j.biopsych.2019.06.012
    [44]
    Cheng Y, Wang ZM, Tan WQ, Wang XN, Li YJ, Bai B, et al. 2018. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nature Neuroscience, 21(12): 1689−1703. doi: 10.1038/s41593-018-0261-7
    [45]
    Cheroni C, Caporale N, Testa G. 2020. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 11(1): 69. doi: 10.1186/s13229-020-00370-1
    [46]
    Choi YB, Li HL, Kassabov SR, Jin I, Puthanveettil SV, Karl KA, et al. 2011. Neurexin-neuroligin transsynaptic interaction mediates learning-related synaptic remodeling and long-term facilitation in Aplysia. Neuron, 70(3): 468–481.
    [47]
    Chung BHY, Tao VQ, Tso WWY. 2014. Copy number variation and autism: new insights and clinical implications. Journal of the Formosan Medical Association, 113(7): 400−408. doi: 10.1016/j.jfma.2013.01.005
    [48]
    Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, et al. 2004. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Human Molecular Genetics, 13(21): 2679−2689. doi: 10.1093/hmg/ddh282
    [49]
    Collins SC, Bray SM, Suhl JA, Cutler DJ, Coffee B, Zwick ME, et al. 2010. Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males. American Journal of Medical Genetics Part A, 1 52(10): 2512–2520.
    [50]
    Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, et al. 1997. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94(10): 5401−5404. doi: 10.1073/pnas.94.10.5401
    [51]
    Condro MC, White SA. 2014. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. The Journal of Comparative Neurology, 522(1): 169−185. doi: 10.1002/cne.23394
    [52]
    Constantino JN, Lajonchere C, Lutz M, Gray T, Abbacchi A, McKenna K, et al. 2006. Autistic social impairment in the siblings of children with pervasive developmental disorders. The American Journal of Psychiatry, 163(2): 294−296. doi: 10.1176/appi.ajp.163.2.294
    [53]
    Coretti L, Cristiano C, Florio E, Scala G, Lama A, Keller S, et al. 2017. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Scientific Reports, 7: 45356. doi: 10.1038/srep45356
    [54]
    Costilla R, Kemper KE, Byrne EM, Porto-Neto LR, Carvalheiro R, Purfield DC, et al. 2020. Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. Genetics Selection Evolution, 52(1): 51. doi: 10.1186/s12711-020-00569-z
    [55]
    Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ, Niu W, et al. 2015. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nature Communications, 6: 6404. doi: 10.1038/ncomms7404
    [56]
    Cunniff MM, Markenscoff-Papadimitriou E, Ostrowski J, Rubenstein JL, Sohal VS. 2020. Altered hippocampal-prefrontal communication during anxiety-related avoidance in mice deficient for the autism-associated gene Pogz. eLife, 9: e54835.
    [57]
    D'Angelo CS, Dos Santos MFM, Alonso LG, Koiffmann CP. 2015. Two new cases of 1p21.3 deletions and an unbalanced translocation t(8;12) among individuals with syndromic obesity. Molecular Syndromology, 6(2): 63−70. doi: 10.1159/000371600
    [58]
    de Abreu MS, Genario R, Giacomini ACVV, Demin KA, Lakstygal AM, Amstislavskaya TG, et al. 2020. Zebrafish as a model of neurodevelopmental disorders. Neuroscience, 445: 3−11. doi: 10.1016/j.neuroscience.2019.08.034
    [59]
    de Abreu MS, Giacomini ACVV, Genario R, dos Santos BE, Marcon L, Demin KA, et al. 2021. Color as an important biological variable in zebrafish models: implications for translational neurobehavioral research. Neuroscience & Biobehavioral Reviews, 124: 1−15.
    [60]
    De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526): 209−215. doi: 10.1038/nature13772
    [61]
    Dockendorff TC, Su HS, McBride SM, Yang ZH, Choi CH, Siwicki KK, et al. 2002. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron, 34(6): 973−984. doi: 10.1016/S0896-6273(02)00724-9
    [62]
    Dodero L, Damiano M, Galbusera A, Bifone A, Tsaftsaris SA, Scattoni ML, et al. 2013. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS One, 8(10): e76655. doi: 10.1371/journal.pone.0076655
    [63]
    Donovan M, Mackey CS, Platt GN, Rounds J, Brown AN, Trickey DJ, et al. 2020. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiology of Stress, 13: 100278. doi: 10.1016/j.ynstr.2020.100278
    [64]
    Doyle CA, McDougle CJ. 2012a. Pharmacologic treatments for the behavioral symptoms associated with autism spectrum disorders across the lifespan. Dialogues in Clinical Neuroscience, 14(3): 263−279. doi: 10.31887/DCNS.2012.14.3/cdoyle
    [65]
    Doyle CA, McDougle CJ. 2012b. Pharmacotherapy to control behavioral symptoms in children with autism. Expert Opinion on Pharmacotherapy, 13(11): 1615−1629. doi: 10.1517/14656566.2012.674110
    [66]
    Duan JB, Shi JX, Fiorentino A, Leites C, Chen XN, Moy W, et al. 2014. A rare functional noncoding variant at the GWAS-implicated MIR137/MIR2682 locus might confer risk to schizophrenia and bipolar disorder. The American Journal of Human Genetics, 95(6): 744−753. doi: 10.1016/j.ajhg.2014.11.001
    [67]
    Duffney LJ, Wei J, Cheng J, Liu WH, Smith KR, Kittler JT, et al. 2013. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. The Journal of Neuroscience, 33(40): 15767−15778. doi: 10.1523/JNEUROSCI.1175-13.2013
    [68]
    Ebitz RB, Watson KK, Platt ML. 2013. Oxytocin blunts social vigilance in the rhesus macaque. Proceedings of the National Academy of Sciences of the United States of America, 110(28): 11630−11635. doi: 10.1073/pnas.1305230110
    [69]
    Eftekharian MM, Ghafouri-Fard S, Noroozi R, Omrani MD, Arsang-Jang S, Ganji M, et al. 2018. Cytokine profile in autistic patients. Cytokine, 108: 120−126. doi: 10.1016/j.cyto.2018.03.034
    [70]
    El-Ansary AK, Ben Bacha A, Kotb M. 2012. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. Journal of Neuroinflammation, 9: 74.
    [71]
    Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. 2013. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. NeuroImage, 70: 288−300. doi: 10.1016/j.neuroimage.2012.12.029
    [72]
    Elnahas EM, Abuelezz SA, Mohamad MI, Nabil MM, Abdelraouf SM, Bahaa N, et al. 2021. Validation of prenatal versus postnatal valproic acid rat models of autism: a behavioral and neurobiological study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 108: 110185. doi: 10.1016/j.pnpbp.2020.110185
    [73]
    Elsworth JD, Jentsch JD, VandeVoort CA, Roth RH, Redmond DE Jr, Leranth C. 2013. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. NeuroToxicology, 35: 113−120. doi: 10.1016/j.neuro.2013.01.001
    [74]
    Endo N, Makinodan M, Somayama N, Komori T, Kishimoto T, Nishi M. 2019. Characterization of behavioral phenotypes in the BTBR T+ Itpr3tf/ J mouse model of autism spectrum disorder under social housing conditions using the multiple animal positioning system. Experimental Animals, 68(3): 319−330. doi: 10.1538/expanim.18-0177
    [75]
    Esclassan F, Francois J, Phillips KG, Loomis S, Gilmour G. 2015. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1α knockout rats. Behavioral Neuroscience, 129(1): 74−85. doi: 10.1037/bne0000024
    [76]
    Etherton MR, Blaiss CA, Powell CM, Sudhof TC. 2009. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proceedings of the National Academy of Sciences of the United States of America, 106(42): 17998−18003. doi: 10.1073/pnas.0910297106
    [77]
    Evatt ML, DeLong MR, Grant WB, Cannell JJ, Tangpricha V. 2009. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 73(12): 997.
    [78]
    Fairless AH, Dow HC, Kreibich AS, Torre M, Kuruvilla M, Gordon E, et al. 2012. Sociability and brain development in BALB/cJ and C57BL/6J mice. Behavioural Brain Research, 228(2): 299−310. doi: 10.1016/j.bbr.2011.12.001
    [79]
    Fairless AH, Dow HC, Toledo MM, Malkus KA, Edelmann M, Li HZ, et al. 2008. Low sociability is associated with reduced size of the corpus callosum in the BALB/cJ inbred mouse strain. Brain Research, 1230: 211−217. doi: 10.1016/j.brainres.2008.07.025
    [80]
    Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi: 10.24272/j.issn.2095-8137.2019.063
    [81]
    Feczko EJ, Bliss-Moreau E, Walum H, Pruett JR Jr, Parr LA. 2016. The macaque social responsiveness scale (mSRS): a rapid screening tool for assessing variability in the social responsiveness of rhesus monkeys (Macaca mulatta). PLoS One, 11(1): e0145956. doi: 10.1371/journal.pone.0145956
    [82]
    Fenckova M, Blok LER, Asztalos L, Goodman DP, Cizek P, Singgih EL, et al. 2019. Habituation learning is a widely affected mechanism in Drosophila models of intellectual disability and autism spectrum disorders. Biological Psychiatry, 86(4): 294−305. doi: 10.1016/j.biopsych.2019.04.029
    [83]
    Foley KA, MacFabe DF, Kavaliers M, Ossenkopp KP. 2015. Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: relevance to autism spectrum disorders. Behavioural Brain Research, 278: 244−256. doi: 10.1016/j.bbr.2014.09.032
    [84]
    Frazier TW, Hardan AY. 2009. A meta-analysis of the corpus callosum in autism. Biological Psychiatry, 66(10): 935−941. doi: 10.1016/j.biopsych.2009.07.022
    [85]
    Fukai R, Hiraki Y, Yofune H, Tsurusaki Y, Nakashima M, Saitsu H, et al. 2015. A case of autism spectrum disorder arising from a de novo missense mutation in POGZ. Journal of Human Genetics, 60(5): 277–279.
    [86]
    Garcia-Oscos F, Koch TMI, Pancholi H, Trusel M, Daliparthi V, Co M, et al. 2021. Autism-linked gene FoxP1 selectively regulates the cultural transmission of learned vocalizations. Science Advances, 7(6): eabd2827. doi: 10.1126/sciadv.abd2827
    [87]
    Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. 2014. Most genetic risk for autism resides with common variation. Nature Genetics, 46(8): 881−885. doi: 10.1038/ng.3039
    [88]
    Gauthier C, Doyen C, Amado I, Lôo H, Gaillard R. 2016. Therapeutic effects of oxytocin in autism: current status of the research. L'Encéphale, 42(1): 24−31.
    [89]
    Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, et al. 2020. Seizing the moment: zebrafish epilepsy models. Neuroscience & Biobehavioral Reviews, 116: 1−20.
    [90]
    Gdalyahu A, Lazaro M, Penagarikano O, Golshani P, Trachtenberg JT, Geschwind DH. 2015. The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study. PLoS One, 10(5): e0125633. doi: 10.1371/journal.pone.0125633
    [91]
    Geschwind DH, Flint J. 2015. Genetics and genomics of psychiatric disease. Science, 349(6255): 1489−1494. doi: 10.1126/science.aaa8954
    [92]
    Geschwind DH, State MW. 2015. Gene hunting in autism spectrum disorder: on the path to precision medicine. The Lancet Neurology, 14(11): 1109−1120. doi: 10.1016/S1474-4422(15)00044-7
    [93]
    Ghazanfar AA, Santos LR. 2004. Primate brains in the wild: the sensory bases for social interactions. Nature Reviews Neuroscience, 5(8): 603−616. doi: 10.1038/nrn1473
    [94]
    Gieling ET, Nordquist RE, van der Staay FJ. 2011. Assessing learning and memory in pigs. Animal Cognition, 14(2): 151−173. doi: 10.1007/s10071-010-0364-3
    [95]
    Gładysz D, Krzywdzińska A, Hozyasz KK. 2018. Immune abnormalities in autism spectrum disorder-could they hold promise for causative treatment?. Molecular Neurobiology, 55(8): 6387−6435. doi: 10.1007/s12035-017-0822-x
    [96]
    Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S, et al. 2012. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 485(7398): 363−367. doi: 10.1038/nature11091
    [97]
    Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, et al. 2017. Germline Chd8 haploinsufficiency alters brain development in mouse. Nature Neuroscience, 20(8): 1062−1073. doi: 10.1038/nn.4592
    [98]
    Grohs MN, Reynolds JE, Liu JY, Martin JW, Pollock T, Lebel C, et al. 2019. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environmental Health, 18(1): 85. doi: 10.1186/s12940-019-0528-9
    [99]
    Guastella AJ, Hickie IB. 2016. Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biological Psychiatry, 79(3): 234−242. doi: 10.1016/j.biopsych.2015.06.028
    [100]
    Guy J, Hendrich B, Holmes M, Martin JE, Bird A. 2001. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 27(3): 322−326. doi: 10.1038/85899
    [101]
    Hacohen-Kleiman G, Moaraf S, Kapitansky O, Gozes I. 2020. Sex-and region-dependent expression of the autism-linked ADNP correlates with social- and speech-related genes in the canary brain. Journal of Molecular Neuroscience, 70(11): 1671−1683. doi: 10.1007/s12031-020-01700-x
    [102]
    Haddad FL, Patel SV, Schmid S. 2020. Maternal immune activation by Poly I: C as a preclinical model for neurodevelopmental disorders: a focus on autism and schizophrenia. Neuroscience & Biobehavioral Reviews, 113: 546−567.
    [103]
    Haji N, Riebe I, Aguilar-Valles A, Artinian J, Laplante I, Lacaille JC. 2020. Tsc1 haploinsufficiency in Nkx2.1 cells upregulates hippocampal interneuron mTORC1 activity, impairs pyramidal cell synaptic inhibition, and alters contextual fear discrimination and spatial working memory in mice. Molecular Autism, 11(1): 29. doi: 10.1186/s13229-020-00340-7
    [104]
    Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. 2012. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. American Journal of Gastroenterology, 107(5): 761−767. doi: 10.1038/ajg.2011.482
    [105]
    Hammer M, Krueger-Burg D, Tuffy LP, Cooper BH, Taschenberger H, Goswami SP, et al. 2015. Perturbed hippocampal synaptic inhibition and γ-oscillations in a neuroligin-4 knockout mouse model of autism. Cell Reports, 13(3): 516−523. doi: 10.1016/j.celrep.2015.09.011
    [106]
    Han K, Holder JL Jr, Schaaf CP, Lu H, Chen HM, Kang H, et al. 2013. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 503(7474): 72−77. doi: 10.1038/nature12630
    [107]
    Hata T, Kita T, Kamanaka Y, Honda S, Kakehi K, Kawabata A, et al. 1987. Catecholamine levels in the brain of SART (repeated cold)-stressed rats. Journal of Autonomic Pharmacology, 7(3): 257−266. doi: 10.1111/j.1474-8673.1987.tb00154.x
    [108]
    Hata T, Nishimura Y, Kita T, Itoh E, Kawabata A. 1988. The abnormal open-field behavior of SART-stressed rats and effects of some drugs on it. Japanese Journal of Pharmacology, 48(4): 479−490. doi: 10.1254/jjp.48.479
    [109]
    He CX, Cantu DA, Mantri SS, Zeiger WA, Goel A, Portera-Cailliau C. 2017. Tactile defensiveness and impaired adaptation of neuronal activity in the Fmr1 knock-out mouse model of autism. The Journal of Neuroscience, 37(27): 6475−6487. doi: 10.1523/JNEUROSCI.0651-17.2017
    [110]
    Hertz-Picciotto I, Schmidt RJ, Krakowiak P. 2018. Understanding environmental contributions to autism: causal concepts and the state of science. Autism Research, 11(4): 554−586. doi: 10.1002/aur.1938
    [111]
    Heshmati M, Aleyasin H, Menard C, Christoffel DJ, Flanigan ME, Pfau ML, et al. 2018. Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 115(5): 1111−1116. doi: 10.1073/pnas.1719014115
    [112]
    Honda T, Sofuku K, Matsunaga H, Tachibana M, Mohri I, Taniike M, et al. 2018. Prevalence of antibodies against Borna disease virus proteins in Japanese children with autism spectrum disorder. Microbiology and Immunology, 62(7): 473−476. doi: 10.1111/1348-0421.12603
    [113]
    Hope KA, Flatten D, Cavitch P, May B, Sutcliffe JS, O'Donnell J, et al. 2019. The Drosophila gene Sulfateless modulates autism-like behaviors. Frontiers in Genetics, 10: 574. doi: 10.3389/fgene.2019.00574
    [114]
    Hörnberg H, Pérez-Garci E, Schreiner D, Hatstatt-Burklé L, Magara F, Baudouin S, et al. 2020. Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature, 584(7820): 252−256. doi: 10.1038/s41586-020-2563-7
    [115]
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7): 1451−1463. doi: 10.1016/j.cell.2013.11.024
    [116]
    Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, et al. 2010. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. The Journal of Neuroscience, 30(14): 4999−5007. doi: 10.1523/JNEUROSCI.5538-09.2010
    [117]
    Ibaraki K, Hamada N, Iwamoto I, Ito H, Kawamura N, Morishita R, et al. 2019. Expression analyses of POGZ, a responsible gene for neurodevelopmental disorders, during mouse brain development. Developmental Neuroscience, 41(1–2): 139–148.
    [118]
    Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526): 216−221. doi: 10.1038/nature13908
    [119]
    James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. 2021. The gut-brain-microbiome axis and its link to autism: emerging insights and the potential of zebrafish models. Frontiers in Cell and Developmental Biology, 9: 662916. doi: 10.3389/fcell.2021.662916
    [120]
    Jaramillo TC, Xuan Z, Reimers JM, Escamilla CO, Liu SN, Powell CM. 2020. Early restoration of Shank3 Expression in Shank3 knock-out mice prevents core ASD-like behavioral phenotypes. eNeuro, 7(3): ENEURO.0332−19.2020.
    [121]
    Jayakumar V, Nishimura O, Kadota M, Hirose N, Sano H, Murakawa Y, et al. 2021. Chromosomal-scale de novo genome assemblies of cynomolgus macaque and common marmoset. Scientific Data, 8(1): 159. doi: 10.1038/s41597-021-00935-6
    [122]
    Jin X, Ji L, Chen QC, Sheng R, Ji FH, Yang JP. 2020. Anesthesia plus surgery in neonatal period impairs preference for social novelty in mice at the juvenile age. Biochemical and Biophysical Research Communications, 530(3): 603−608. doi: 10.1016/j.bbrc.2020.07.108
    [123]
    Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, et al. 2018. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nature Neuroscience, 21(9): 1218−1228. doi: 10.1038/s41593-018-0208-z
    [124]
    Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, et al. 2019. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Scientific Reports, 9(1): 5821. doi: 10.1038/s41598-019-42183-0
    [125]
    Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. 2017. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5(1): 10. doi: 10.1186/s40168-016-0225-7
    [126]
    Kanner L. 1968. Autistic disturbances of affective contact. Acta Paedopsychiatrica, 35(4): 100−136.
    [127]
    Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. 2016. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature, 537(7622): 675−679. doi: 10.1038/nature19357
    [128]
    Kaur K, Simon AF, Chauhan V, Chauhan A. 2015. Effect of bisphenol A on Drosophila melanogaster behavior-A new model for the studies on neurodevelopmental disorders. Behavioural Brain Research, 284: 77−84. doi: 10.1016/j.bbr.2015.02.001
    [129]
    Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, et al. 2021. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Reports, 35(1): 108932. doi: 10.1016/j.celrep.2021.108932
    [130]
    Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi: 10.1016/j.beproc.2012.03.019
    [131]
    Kim JW, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, et al. 2014a. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS One, 9(8): e104927. doi: 10.1371/journal.pone.0104927
    [132]
    Kim L, He L, Maaswinkel H, Zhu LQ, Sirotkin H, Weng W. 2014b. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55: 40−49. doi: 10.1016/j.pnpbp.2014.03.007
    [133]
    Kitagawa K, Matsumura K, Baba M, Kondo M, Takemoto T, Nagayasu K, et al. 2021. Intranasal oxytocin administration ameliorates social behavioral deficits in a POGZWT/Q1038R mouse model of autism spectrum disorder. Molecular Brain, 14(1): 56. doi: 10.1186/s13041-021-00769-8
    [134]
    Kocher SD, Mallarino R, Rubin BER, Yu DW, Hoekstra HE, Pierce NE. 2018. The genetic basis of a social polymorphism in halictid bees. Nature Communications, 9(1): 4338. doi: 10.1038/s41467-018-06824-8
    [135]
    Kolozsi E, Mackenzie RN, Roullet FI, Decatanzaro D, Foster JA. 2009. Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience, 163(4): 1201−1210. doi: 10.1016/j.neuroscience.2009.07.021
    [136]
    Kosaka H, Munesue T, Ishitobi M, Asano M, Omori M, Sato M, et al. 2012. Long-term oxytocin administration improves social behaviors in a girl with autistic disorder. BMC Psychiatry, 12: 110. doi: 10.1186/1471-244X-12-110
    [137]
    Kozol RA, Cukier HN, Zou B, Mayo V, De Rubeis S, Cai GQ, et al. 2015. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Human Molecular Genetics, 24(14): 4006−4023.
    [138]
    Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJS, Ozkaynak E, et al. 2017. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature, 543(7646): 507−512.
    [139]
    Kumar S, Hedges SB. 1998. A molecular timescale for vertebrate evolution. Nature, 392(6679): 917−920. doi: 10.1038/31927
    [140]
    Kumari E, Velloso FJ, Nasuhidehnavi A, Somasundaram A, Savanur VH, Buono KD, et al. 2020. Developmental IL-6 exposure favors production of PDGF-responsive multipotential progenitors at the expense of neural stem cells and other progenitors. Stem Cell Reports, 14(5): 861−875. doi: 10.1016/j.stemcr.2020.03.019
    [141]
    Kunimoto M. 1995. A neuron-specific isoform of brain ankyrin, 440-kD ankyrinB, is targeted to the axons of rat cerebellar neurons. The Journal of Cell Biology, 131(6 Pt 2): 1821–1829.
    [142]
    Kunkel GR, Tracy JA, Jalufka FL, Lekven AC. 2018. CHD8short, a naturally-occurring truncated form of a chromatin remodeler lacking the helicase domain, is a potent transcriptional coregulator. Gene, 641: 303–309.
    [143]
    Lam HC, Siroky BJ, Henske EP. 2018. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nature Reviews Nephrology, 14(11): 704−716. doi: 10.1038/s41581-018-0059-6
    [144]
    Landman R, Sharma J, Sur M, Desimone R. 2014. Effect of distracting faces on visual selective attention in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 111(50): 18037−18042. doi: 10.1073/pnas.1420167111
    [145]
    Li CH, Coffey EL, Dall'Agnese A, Hannett NM, Tang X, Henninger JE, et al. 2020a. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 586(7829): 440−444. doi: 10.1038/s41586-020-2574-4
    [146]
    Li Y, Luo ZY, Hu YY, Bi YW, Yang JM, Zou WJ, et al. 2020b. The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice. Microbiome, 8(1): 120. doi: 10.1186/s40168-020-00884-z
    [147]
    Liu CX, Li CY, Hu CC, Wang Y, Lin J, Jiang YH, et al. 2018. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Molecular Autism, 9: 23. doi: 10.1186/s13229-018-0204-x
    [148]
    Liu N, Hadj-Bouziane F, Jones KB, Turchi JN, Averbeck BB, Ungerleider LG. 2015. Oxytocin modulates fMRI responses to facial expression in macaques. Proceedings of the National Academy of Sciences of the United States of America, 112(24): E3123−E3130. doi: 10.1073/pnas.1508097112
    [149]
    Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. 2016. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530(7588): 98−102. doi: 10.1038/nature16533
    [150]
    Lobzhanidze G, Lordkipanidze T, Zhvania M, Japaridze N, MacFabe DF, Pochkidze N, et al. 2019. Effect of propionic acid on the morphology of the amygdala in adolescent male rats and their behavior. Micron, 125: 102732. doi: 10.1016/j.micron.2019.102732
    [151]
    Lorenzo DN, Badea A, Davis J, Hostettler J, He J, Zhong GS, et al. 2014. A PIK3C3-ankyrin-B-dynactin pathway promotes axonal growth and multiorganelle transport. Journal of Cell Biology, 207(6): 735−752. doi: 10.1083/jcb.201407063
    [152]
    MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. 2011. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behavioural Brain Research, 217(1): 47−54. doi: 10.1016/j.bbr.2010.10.005
    [153]
    Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M, et al. 2020. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2016. Morbidity and Mortality Weekly Report. Surveillance Summaries, 69(4): 1−12.
    [154]
    Manoli DS, State MW. 2021. Autism spectrum disorder genetics and the search for pathological mechanisms. The American Journal of Psychiatry, 178(1): 30−38. doi: 10.1176/appi.ajp.2020.20111608
    [155]
    Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, et al. 2021. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Molecular Autism, 12(1): 2. doi: 10.1186/s13229-020-00412-8
    [156]
    Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. 2020. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nature Communications, 11(1): 859. doi: 10.1038/s41467-020-14697-z
    [157]
    McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. 2009. Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 41(11): 1223−1227. doi: 10.1038/ng.474
    [158]
    McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. 2008. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7(2): 152−163. doi: 10.1111/j.1601-183X.2007.00330.x
    [159]
    Mehta MV, Gandal MJ, Siegel SJ. 2011. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One, 6(10): e26077. doi: 10.1371/journal.pone.0026077
    [160]
    Meng XL, Shen F, Li CL, Li YH, Wang XW. 2016. Depression-like behaviors in tree shrews and comparison of the effects of treatment with fluoxetine and carbetocin. Pharmacology Biochemistry and Behavior, 145: 1−8. doi: 10.1016/j.pbb.2016.03.006
    [161]
    Mensi MM, Rogantini C, Marchesi M, Borgatti R, Chiappedi M. 2021. Lactobacillus plantarum PS128 and other probiotics in children and adolescents with autism spectrum disorder: a real-world experience. Nutrients, 13(6): 2036. doi: 10.3390/nu13062036
    [162]
    Meyza KZ, Blanchard DC. 2017. The BTBR mouse model of idiopathic autism - Current view on mechanisms. Neuroscience & Biobehavioral Reviews, 76: 99−110.
    [163]
    Miles JH. 2011. Autism spectrum disorders-A genetics review. Genetics in Medicine, 13(4): 278−294. doi: 10.1097/GIM.0b013e3181ff67ba
    [164]
    Missler M, Zhang WQ, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, et al. 2003. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 423(6943): 939−948. doi: 10.1038/nature01755
    [165]
    Modi B, Pimpinella D, Pazienti A, Zacchi P, Cherubini E, Griguoli M. 2019. Possible implication of the CA2 hippocampal circuit in social cognition deficits observed in the neuroligin 3 knock-out mouse, a non-syndromic animal model of autism. Frontiers in Psychiatry, 10: 513. doi: 10.3389/fpsyt.2019.00513
    [166]
    Mossa A, Pagano J, Ponzoni L, Tozzi A, Vezzoli E, Sciaccaluga M, et al. 2021. Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Molecular Psychiatry, 26(6): 1928−1944. doi: 10.1038/s41380-020-00979-x
    [167]
    Moustgaard A, Lind NM, Hemmingsen R, Hansen AK. 2002. Spontaneous object recognition in the Göttingen minipig. Neural Plasticity, 9: 845262.
    [168]
    Mukherjee SB. 2017. Autism spectrum disorders-diagnosis and management. The Indian Journal of Pediatrics, 84(4): 307−314. doi: 10.1007/s12098-016-2272-2
    [169]
    Mustieles V, Fernández MF. 2020. Bisphenol A shapes children's brain and behavior: towards an integrated neurotoxicity assessment including human data. Environmental Health, 19(1): 66. doi: 10.1186/s12940-020-00620-y
    [170]
    Nakamura K, Itoh K, Dai HM, Han LZ, Wang XH, Kato S, et al. 2012. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain & Development, 34(1): 57−63.
    [171]
    Nakanishi M, Nomura J, Ji X, Tamada K, Arai T, Takahashi E, et al. 2017. Functional significance of rare neuroligin 1 variants found in autism. PLoS Genetics, 13(8): e1006940. doi: 10.1371/journal.pgen.1006940
    [172]
    Namimatsu A, Go K, Ohara H, Yoneda R. 1992. Changes in muscarinic acetylcholine receptors in the isolated duodenum from repeatedly cold-stressed rats and the effect of neurotropin. Life Sciences, 50(25): 1993−2000. doi: 10.1016/0024-3205(92)90529-X
    [173]
    Ni RJ, Tian Y, Dai XY, Zhao LS, Wei JX, Zhou JN, et al. 2020. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 41(3): 258−272. doi: 10.24272/j.issn.2095-8137.2020.034
    [174]
    Normand EA, Crandall SR, Thorn CA, Murphy EM, Voelcker B, Browning C, et al. 2013. Temporal and mosaic Tsc1 deletion in the developing thalamus disrupts thalamocortical circuitry, neural function, and behavior. Neuron, 78(5): 895−909. doi: 10.1016/j.neuron.2013.03.030
    [175]
    Ohl F, Oitzl MS, Fuchs E. 1998. Assessing cognitive functions in tree shrews: visuo-spatial and spatial learning in the home cage. Journal of Neuroscience Methods, 81(1–2): 35–40.
    [176]
    Orefice LL, Mosko JR, Morency DT, Wells MF, Tasnim A, Mozeika SM, et al. 2019. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell, 178(4): 867−886.e24. doi: 10.1016/j.cell.2019.07.024
    [177]
    Ornoy A, Weinstein-Fudim L, Ergaz Z. 2015. Prenatal factors associated with autism spectrum disorder (ASD). Reproductive Toxicology, 56: 155−169. doi: 10.1016/j.reprotox.2015.05.007
    [178]
    O'Roak BJ, Vives L, Fu WQ, Egertson JD, Stanaway IB, Phelps IG, et al. 2012. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science, 338(6114): 1619−1622. doi: 10.1126/science.1227764
    [179]
    Ouellette J, Toussay X, Comin CH, da F. Costa L, Ho M, Lacalle-Aurioles M, et al. 2020. Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nature Neuroscience, 23(9): 1090−1101. doi: 10.1038/s41593-020-0663-1
    [180]
    Pagani M, Damiano M, Galbusera A, Tsaftaris SA, Gozzi A. 2016. Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. Journal of Neuroscience Methods, 267: 62−73. doi: 10.1016/j.jneumeth.2016.04.007
    [181]
    Panaitof SC. 2012. A songbird animal model for dissecting the genetic bases of autism spectrum disorder. Disease Markers, 33: 727058.
    [182]
    Parr LA, Modi M, Siebert E, Young LJ. 2013. Intranasal oxytocin selectively attenuates rhesus monkeys' attention to negative facial expressions. Psychoneuroendocrinology, 38(9): 1748−1756. doi: 10.1016/j.psyneuen.2013.02.011
    [183]
    Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong HM, et al. 2011. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1): 235−246. doi: 10.1016/j.cell.2011.08.040
    [184]
    Peretti S, Mariano M, Mazzocchetti C, Mazza M, Pino MC, Di Pianella AV, et al. 2019. Diet: the keystone of autism spectrum disorder?. Nutritional Neuroscience, 22(12): 825−839. doi: 10.1080/1028415X.2018.1464819
    [185]
    Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. 2014. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94(5): 677−694. doi: 10.1016/j.ajhg.2014.03.018
    [186]
    Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. 2010. Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304): 368−372. doi: 10.1038/nature09146
    [187]
    Pitkänen A, Kemppainen S. 2002. Comparison of the distribution of calcium-binding proteins and intrinsic connectivity in the lateral nucleus of the rat, monkey, and human amygdala. Pharmacology Biochemistry and Behavior, 71(3): 369−377. doi: 10.1016/S0091-3057(01)00690-6
    [188]
    Pizzamiglio L, Focchi E, Cambria C, Ponzoni L, Ferrara S, Bifari F, et al. 2021. The DNA repair protein ATM as a target in autism spectrum disorder. JCI Insight, 6(3): e133654. doi: 10.1172/jci.insight.133654
    [189]
    Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. 2017. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Reports, 19(2): 335−350. doi: 10.1016/j.celrep.2017.03.052
    [190]
    Pletnikov MV, Moran TH, Carbone KM. 2002. Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Frontiers in Bioscience, 7(4): 593−607. doi: 10.2741/A797
    [191]
    Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G, et al. 2014. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Reports, 7(4): 1077−1092. doi: 10.1016/j.celrep.2014.03.036
    [192]
    Prieto M, Folci A, Poupon G, Schiavi S, Buzzelli V, Pronot M, et al. 2021. Missense mutation of Fmr1 results in impaired AMPAR-mediated plasticity and socio-cognitive deficits in mice. Nature Communications, 12(1): 1557. doi: 10.1038/s41467-021-21820-1
    [193]
    Putnam PT, Roman JM, Zimmerman PE, Gothard KM. 2016. Oxytocin enhances gaze-following responses to videos of natural social behavior in adult male rhesus monkeys. Psychoneuroendocrinology, 72: 47−53. doi: 10.1016/j.psyneuen.2016.05.016
    [194]
    Queen NJ, Boardman AA, Patel RS, Siu JJ, Mo XK, Cao L. 2020. Environmental enrichment improves metabolic and behavioral health in the BTBR mouse model of autism. Psychoneuroendocrinology, 111: 104476. doi: 10.1016/j.psyneuen.2019.104476
    [195]
    Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, et al. 2009. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes, Brain, and Behavior, 8(4): 416−425. doi: 10.1111/j.1601-183X.2009.00487.x
    [196]
    Rapin I, Tuchman RF. 2008. Autism: definition, neurobiology, screening, diagnosis. Pediatric Clinics of North America, 55(5): 1129−1146. doi: 10.1016/j.pcl.2008.07.005
    [197]
    Rat Genome Sequencing Project Consortium. 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428(6982): 493−521. doi: 10.1038/nature02426
    [198]
    Rea V, Van Raay TJ. 2020. Using zebrafish to model autism spectrum disorder: a comparison of ASD risk genes between zebrafish and their mammalian counterparts. Frontiers in Molecular Neuroscience, 13: 575575. doi: 10.3389/fnmol.2020.575575
    [199]
    Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, et al. 2013. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 51: 93−103. doi: 10.1016/j.nbd.2012.10.014
    [200]
    Reynolds KE, Wong CR, Scott AL. 2021. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia, 69(7): 1816−1832. doi: 10.1002/glia.23997
    [201]
    Richter JD, Zhao XY. 2021. The molecular biology of FMRP: new insights into fragile X syndrome. Nature Reviews Neuroscience, 22(4): 209−222. doi: 10.1038/s41583-021-00432-0
    [202]
    Rossen NG, MacDonald JK, de Vries EM, D'Haens GR, de Vos WM, Zoetendal EG, et al. 2015. Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World Journal of Gastroenterology, 21(17): 5359−5371. doi: 10.3748/wjg.v21.i17.5359
    [203]
    Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. 2014. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell, 158(1): 198−212. doi: 10.1016/j.cell.2014.04.045
    [204]
    Rutishauser U, Mamelak AN, Adolphs R. 2015. The primate amygdala in social perception - insights from electrophysiological recordings and stimulation. Trends in Neurosciences, 38(5): 295−306. doi: 10.1016/j.tins.2015.03.001
    [205]
    Sacco R, Curatolo P, Manzi B, Militerni R, Bravaccio C, Frolli A, et al. 2010. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Research, 3(5): 237−252. doi: 10.1002/aur.151
    [206]
    Sadowski RN, Wise LM, Park PY, Schantz SL, Juraska JM. 2014. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience, 279: 122−131. doi: 10.1016/j.neuroscience.2014.08.038
    [207]
    Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. 2017. The heritability of autism spectrum disorder. The Journal of the American Medical Association, 318(12): 1182−1184. doi: 10.1001/jama.2017.12141
    [208]
    Sándor S, Czeibert K, Salamon A, Kubinyi E. 2021. Man's best friend in life and death: scientific perspectives and challenges of dog brain banking. GeroScience, 43(4): 1653−1668. doi: 10.1007/s11357-021-00373-7
    [209]
    Sarrouilhe D, Dejean C. 2017. Autism spectrum disorders and bisphenol A: is serotonin the lacking link in the chain?. L'Encéphale, 43(4): 402−404.
    [210]
    Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, et al. 2012. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nature Communications, 3: 1292. doi: 10.1038/ncomms2295
    [211]
    Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, et al. 2009. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology, 110(3): 628−637. doi: 10.1097/ALN.0b013e3181974fa2
    [212]
    Satterstrom FK, Kosmicki JA, Wang JB, Breen MS, De Rubeis S, An JY, et al. 2020. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180(3): 568−584.e23. doi: 10.1016/j.cell.2019.12.036
    [213]
    Savier E, Sedigh-Sarvestani M, Wimmer R, Fitzpatrick D. 2021. A bright future for the tree shrew in neuroscience research: summary from the inaugural Tree Shrew Users Meeting. Zoological Research, 42(4): 478−481. doi: 10.24272/j.issn.2095-8137.2021.178
    [214]
    Saxena K, Webster J, Hallas-Potts A, Mackenzie R, Spooner PA, Thomson D, et al. 2018. Experiential contributions to social dominance in a rat model of fragile-X syndrome. Proceedings of the Royal Society B:Biological Sciences, 285(1880): 20180294. doi: 10.1098/rspb.2018.0294
    [215]
    Schiavi S, Carbone E, Melancia F, Buzzelli V, Manduca A, Campolongo P, et al. 2020. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutritional Neuroscience, 11: 1−14.
    [216]
    Schmitt O, O'Driscoll K, Baxter EM. 2019. Exploratory study of the effects of intra-uterine growth retardation and neonatal energy supplementation of low birth-weight piglets on their post-weaning cognitive abilities. Animal Cognition, 22(3): 373−385. doi: 10.1007/s10071-019-01251-8
    [217]
    Scotland P, Zhou DX, Benveniste H, Bennett V. 1998. Nervous system defects of AnkyrinB (-/-) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD AnkyrinB in premyelinated axons. Journal of Cell Biology, 143(5): 1305−1315. doi: 10.1083/jcb.143.5.1305
    [218]
    Scott KE, Kazazian K, Mann RS, Möhrle D, Schormans AL, Schmid S, et al. 2020. Loss of Cntnap2 in the rat causes autism-related alterations in social interactions, stereotypic behavior, and sensory processing. Autism Research, 13(10): 1698−1717. doi: 10.1002/aur.2364
    [219]
    Shahbazian MD, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, et al. 2002. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2): 243−254. doi: 10.1016/S0896-6273(02)00768-7
    [220]
    Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell, 177(6): 1600−1618.e17. doi: 10.1016/j.cell.2019.05.004
    [221]
    Shultz SR, MacFabe DF, Martin S, Jackson J, Taylor R, Boon F, et al. 2009. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behavioural Brain Research, 200(1): 33−41. doi: 10.1016/j.bbr.2008.12.023
    [222]
    Silverman JL, Crawley JN. 2014. The promising trajectory of autism therapeutics discovery. Drug Discovery Today, 19(7): 838−844. doi: 10.1016/j.drudis.2013.12.007
    [223]
    Simmons DH, Titley HK, Hansel C, Mason P. 2021. Behavioral tests for mouse models of autism: an argument for the inclusion of cerebellum-controlled motor behaviors. Neuroscience, 462: 303−319. doi: 10.1016/j.neuroscience.2020.05.010
    [224]
    Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M. 2009. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. Journal of Neuroimmunology, 211(1–2): 39–48.
    [225]
    Sledziowska M, Kalbassi S, Baudouin SJ. 2020. Complex interactions between genes and social environment cause phenotypes associated with autism spectrum disorders in mice. eNeuro, 7(4),doi: 10.1523/ENEURO.0124-20.2020.
    [226]
    Smith SEP, Zhou YD, Zhang GP, Jin Z, Stoppel DC, Anderson MP. 2011. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Science Translational Medicine, 3(103): 103ra97.
    [227]
    Søndergaard LV, Ladewig J, Dagnæs-Hansen F, Herskin MS, Holm IE. 2012. Object recognition as a measure of memory in 1–2 years old transgenic minipigs carrying the APPsw mutation for Alzheimer's disease. Transgenic Research, 21(6): 1341−1348. doi: 10.1007/s11248-012-9620-4
    [228]
    Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. 2008. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40(6): 751−760. doi: 10.1038/ng.138
    [229]
    Stein TP, Schluter MD, Steer RA, Guo LN, Ming X. 2015. Bisphenol A exposure in children with autism spectrum disorders. Autism Research, 8(3): 272−283. doi: 10.1002/aur.1444
    [230]
    Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. 2016. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. The American Journal of Human Genetics, 98(3): 541−552. doi: 10.1016/j.ajhg.2016.02.004
    [231]
    Stessman HAF, Xiong B, Coe BP, Wang TY, Hoekzema K, Fenckova M, et al. 2017. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 49(4): 515−526. doi: 10.1038/ng.3792
    [232]
    Stewart AM, Grieco F, Tegelenbosch RAJ, Kyzar EJ, Nguyen M, Kaluyeva A, et al. 2015. A novel 3D method of locomotor analysis in adult zebrafish: implications for automated detection of CNS drug-evoked phenotypes. Journal of Neuroscience Methods, 255: 66−74. doi: 10.1016/j.jneumeth.2015.07.023
    [233]
    Südhof TC. 2017. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell, 171(4): 745−769. doi: 10.1016/j.cell.2017.10.024
    [234]
    Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. 2014. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 111(42): E4468–E4477.
    [235]
    Suliman-Lavie R, Title B, Cohen Y, Hamada N, Tal M, Tal N, et al. 2020. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice. Nature Communications, 11(1): 5836. doi: 10.1038/s41467-020-19577-0
    [236]
    Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. 2018. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Molecular Psychiatry, 23(11): 2167−2183. doi: 10.1038/s41380-018-0018-4
    [237]
    Sztainberg Y, Zoghbi HY. 2016. Lessons learned from studying syndromic autism spectrum disorders. Nature Neuroscience, 19(11): 1408−1417. doi: 10.1038/nn.4420
    [238]
    Szulwach KE, Li XK, Smrt RD, Li YJ, Luo YP, Lin L, et al. 2010. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. Journal of Cell Biology, 189(1): 127−141. doi: 10.1083/jcb.200908151
    [239]
    Taieb O, Baleyte JM, Mazet P, Fillet AM. 2001. Borna disease virus and psychiatry. European Psychiatry, 16(1): 3−10. doi: 10.1016/S0924-9338(00)00529-0
    [240]
    Takumi T. 2011. The neurobiology of mouse models syntenic to human chromosome 15q. Journal of Neurodevelopmental Disorders, 3(3): 270−281. doi: 10.1007/s11689-011-9088-1
    [241]
    Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. 2012. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell, 149(3): 525−537. doi: 10.1016/j.cell.2012.03.028
    [242]
    Tang WL, Davidson JD, Zhang GQ, Conen KE, Fang J, Serluca F, et al. 2020. Genetic control of collective behavior in zebrafish. iScience, 23(3): 100942. doi: 10.1016/j.isci.2020.100942
    [243]
    Tatavarty V, Pacheco AT, Kuhnle CG, Lin H, Koundinya P, Miska NJ, et al. 2020. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. Neuron, 106(5): 769−777.e4. doi: 10.1016/j.neuron.2020.02.033
    [244]
    Tazumi T, Hori E, Uwano T, Umeno K, Tanebe K, Tabuchi E, et al. 2005. Effects of prenatal maternal stress by repeated cold environment on behavioral and emotional development in the rat offspring. Behavioural Brain Research, 162(1): 153−160. doi: 10.1016/j.bbr.2005.03.006
    [245]
    Testard C, Tremblay S, Platt M. 2021. From the field to the lab and back: neuroethology of primate social behavior. Current Opinion in Neurobiology, 68: 76−83. doi: 10.1016/j.conb.2021.01.005
    [246]
    The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. 2011. Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10): 969−976. doi: 10.1038/ng.940
    [247]
    Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F. 2016. Heritability of autism spectrum disorders: a meta-analysis of twin studies. Journal of Child Psychology and Psychiatry, 57(5): 585−595. doi: 10.1111/jcpp.12499
    [248]
    Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. 2015. Gastrointestinal microbiota in children with autism in Slovakia. Physiology & Behavior, 138: 179−187.
    [249]
    Topál J, Román V, Turcsán B. 2019. The dog (Canis familiaris) as a translational model of autism: it is high time we move from promise to reality. Wiley Interdisciplinary Reviews Cognitive Science, 10(4): e1495.
    [250]
    Tromp A, Mowry B, Giacomotto J. 2021. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Molecular Psychiatry, 26(3): 747−760. doi: 10.1038/s41380-020-00944-8
    [251]
    Tsai PT, Hull C, Chu YX, Greene-Colozzi E, Sadowski AR, Leech JM, et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488(7413): 647−651. doi: 10.1038/nature11310
    [252]
    Tu ZC, Zhao H, Li B, Yan S, Wang L, Tang YJ, et al. 2019. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Human Molecular Genetics, 28(4): 561−571. doi: 10.1093/hmg/ddy367
    [253]
    Tucci A, Ciaccio C, Scuvera G, Esposito S, Milani D. 2016. MIR137 is the key gene mediator of the syndromic obesity phenotype of patients with 1p21.3 microdeletions. Molecular Cytogenetics, 9: 80. doi: 10.1186/s13039-016-0289-x
    [254]
    Varea O, Martin-de-Saavedra MD, Kopeikina KJ, Schürmann B, Fleming HJ, Fawcett-Patel JM, et al. 2015. Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proceedings of the National Academy of Sciences of the United States of America, 112(19): 6176−6181. doi: 10.1073/pnas.1423205112
    [255]
    Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, et al. 2017. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathologica, 134(4): 537−566. doi: 10.1007/s00401-017-1736-4
    [256]
    Vermeer LMM, Gregory E, Winter MK, McCarson KE, Berman NEJ. 2014. Exposure to bisphenol A exacerbates migraine-like behaviors in a multibehavior model of rat migraine. Toxicological Sciences, 137(2): 416−427. doi: 10.1093/toxsci/kft245
    [257]
    Vieira MM, Jeong J, Roche KW. 2021. The role of NMDA receptor and neuroligin rare variants in synaptic dysfunction underlying neurodevelopmental disorders. Current Opinion in Neurobiology, 69: 93−104. doi: 10.1016/j.conb.2021.03.001
    [258]
    Wang HLV, Forestier S, Corces VG. 2021. Exposure to sevoflurane results in changes of transcription factor occupancy in sperm and inheritance of autism. Biology of Reproduction, 105(3): 705−719. doi: 10.1093/biolre/ioab097
    [259]
    Wang XM, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. 2016. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nature Communications, 7: 11459. doi: 10.1038/ncomms11459
    [260]
    Wang ZJ, Zhong P, Ma KJ, Seo JS, Yang FW, Hu ZH, et al. 2020. Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Molecular Psychiatry, 25(10): 2517−2533. doi: 10.1038/s41380-019-0351-2
    [261]
    Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, et al. 2010. The genome of a songbird. Nature, 464(7289): 757−762. doi: 10.1038/nature08819
    [262]
    Weinstein TAR, Bales KL, Maninger N, Hostetler CM, Capitanio JP. 2014. Early involvement in friendships predicts later plasma concentrations of oxytocin and vasopressin in juvenile rhesus macaques (Macaca mulatta). Frontiers in Behavioral Neuroscience, 8: 295.
    [263]
    Weinstein TAR, Capitanio JP. 2012. Longitudinal stability of friendships in rhesus monkeys (Macaca mulatta): individual- and relationship-level effects. Journal of Comparative Psychology, 126(1): 97−108. doi: 10.1037/a0025607
    [264]
    Weiss LA, Shen YP, Korn JM, Arking DE, Miller DT, Fossdal R, et al. 2008. Association between microdeletion and microduplication at 16p11.2 and autism. The New England Journal of Medicine, 358(7): 667−675. doi: 10.1056/NEJMoa075974
    [265]
    Werling DM, Brand H, An JY, Stone MR, Zhu LX, Glessner JT, et al. 2018. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nature Genetics, 50(5): 727−736. doi: 10.1038/s41588-018-0107-y
    [266]
    White J, Beck CR, Harel T, Posey JE, Jhangiani SN, Tang S, et al. 2016. POGZ truncating alleles cause syndromic intellectual disability. Genome Medicine, 8(1): 3. doi: 10.1186/s13073-015-0253-0
    [267]
    Willemsen MH, Vallès A, Kirkels LAMH, Mastebroek M, Loohuis NO, Kos A, et al. 2011. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. Journal of Medical Genetics, 48(12): 810−818. doi: 10.1136/jmedgenet-2011-100294
    [268]
    Wintler T, Schoch H, Frank MG, Peixoto L. 2020. Sleep, brain development, and autism spectrum disorders: Insights from animal models. Journal of Neuroscience Research, 98(6): 1137−1149. doi: 10.1002/jnr.24619
    [269]
    Wöhr M, Silverman JL, Scattoni ML, Turner SM, Harris MJ, Saxena R, et al. 2013. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behavioural Brain Research, 251: 50−64. doi: 10.1016/j.bbr.2012.07.024
    [270]
    Wolf U, Rapoport MJ, Schweizer TA. 2009. Evaluating the affective component of the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(2): 245−253.
    [271]
    Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, et al. 2019. Transgenerational bisphenol A causes deficits in social recognition and alters postsynaptic density genes in mice. Endocrinology, 160(8): 1854−1867. doi: 10.1210/en.2019-00196
    [272]
    Wolstenholme JT, Goldsby JA, Rissman EF. 2013. Transgenerational effects of prenatal bisphenol A on social recognition. Hormones and Behavior, 64(5): 833−839. doi: 10.1016/j.yhbeh.2013.09.007
    [273]
    Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, et al. 2012. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 486(7402): 261−265. doi: 10.1038/nature11208
    [274]
    Wong H, Hoeffer C. 2018. Maternal IL-17A in autism. Experimental Neurology, 299: 228−240. doi: 10.1016/j.expneurol.2017.04.010
    [275]
    Wu WL. 2017. Association among gut microbes, intestinal physiology, and autism. EBioMedicine, 25: 11−12. doi: 10.1016/j.ebiom.2017.10.013
    [276]
    Wu WL, Adame MD, Liou CW, Barlow JT, Lai TT, Sharon G, et al. 2021. Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 595(7867): 409−414. doi: 10.1038/s41586-021-03669-y
    [277]
    Wu Y, Zhong WW, Cui NR, Johnson CM, Xing H, Zhang S, et al. 2016. Characterization of Rett Syndrome-like phenotypes in Mecp2-knockout rats. Journal of Neurodevelopmental Disorders, 8: 23. doi: 10.1186/s11689-016-9156-7
    [278]
    Xu L, Yu DD, Ma YH, Yao YL, Luo RH, Feng XL, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
    [279]
    Xu XH, Dong FN, Yang YL, Wang YU, Wang R, Shen XY. 2015. Sex-specific effects of long-term exposure to bisphenol-A on anxiety- and depression-like behaviors in adult mice. Chemosphere, 120: 258−266. doi: 10.1016/j.chemosphere.2014.07.021
    [280]
    Xu XX, Li CY, Gao XB, Xia K, Guo H, Li YL, et al. 2018. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Research, 28(1): 48−68. doi: 10.1038/cr.2017.132
    [281]
    Yang M, Mahrt EJ, Lewis F, Foley G, Portmann T, Dolmetsch RE, et al. 2015. 16p11.2 deletion syndrome mice display sensory and ultrasonic vocalization deficits during social interactions. Autism Research, 8(5): 507−521. doi: 10.1002/aur.1465
    [282]
    Yang R, Walder-Christensen KK, Kim N, Wu DW, Lorenzo DN, Badea A, et al. 2019. ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 116(30): 15262−15271. doi: 10.1073/pnas.1904348116
    [283]
    Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi: 10.24272/j.issn.2095-8137.2017.032
    [284]
    Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. 2016. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Molecular Psychiatry, 21(9): 1225−1231. doi: 10.1038/mp.2015.162
    [285]
    Ye MS, Zhang JY, Yu DD, Xu M, Xu L, Lv LB, et al. 2021. Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zoological Research, 42(6): 692−709. doi: 10.24272/j.issn.2095-8137.2021.272
    [286]
    Ye YZ, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, et al. 2015. De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Cold Spring Harbor Molecular Case Studies, 1(1): a000455. doi: 10.1101/mcs.a000455
    [287]
    Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. 2017. Advances in understanding the pathophysiology of autism spectrum disorders. Behavioural Brain Research, 331: 92−101. doi: 10.1016/j.bbr.2017.04.038
    [288]
    Yi JJ, Berrios J, Newbern JM, Snider WD, Philpot BD, Hahn KM, et al. 2015. An autism-linked mutation disables phosphorylation control of UBE3A. Cell, 162(4): 795−807. doi: 10.1016/j.cell.2015.06.045
    [289]
    Yin XM, Jones N, Yang J, Asraoui N, Mathieu ME, Cai LW, et al. 2021. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nature Neuroscience, 24(5): 646−657. doi: 10.1038/s41593-021-00815-7
    [290]
    Zerbo O, Iosif AM, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. 2013. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. Journal of Autism and Developmental Disorders, 43(1): 25−33. doi: 10.1007/s10803-012-1540-x
    [291]
    Zhang B, Zhou ZG, Zhou Y, Zhang T, Ma YY, Niu YY, et al. 2019. Social-valence-related increased attention in rett syndrome cynomolgus monkeys: an eye-tracking study. Autism Research, 12(11): 1585−1597. doi: 10.1002/aur.2189
    [292]
    Zhang J, Luo RC, Man XY, Lv LB, Yao YG, Zheng M. 2020. The anatomy of the skin of the Chinese tree shrew is very similar to that of human skin. Zoological Research, 41(2): 208−212. doi: 10.24272/j.issn.2095-8137.2020.028
    [293]
    Zhou B, Chen LM, Liao P, Huang L, Chen Z, Liao DQ, et al. 2019a. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biology, 17(8): e3000086. doi: 10.1371/journal.pbio.3000086
    [294]
    Zhou H, Xu X, Yan WL, Zou XB, Wu LJ, Luo XR, et al. 2020. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neuroscience Bulletin, 36(9): 961−971. doi: 10.1007/s12264-020-00530-6
    [295]
    Zhou Y, Sharma J, Ke Q, Landman R, Yuan JL, Chen H, et al. 2019b. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 570(7761): 326−331. doi: 10.1038/s41586-019-1278-0
    [296]
    Zhan YF, Wei JZ, Liang J, Xu X, He R, Robbins TW, et al. 2021. Diagnostic classification for human autism and obsessive-compulsive disorder based on machine learning from a primate genetic model. The American Journal of Psychiatry, 178(1): 65−76. doi: 10.1176/appi.ajp.2020.19101091
    [297]
    Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, et al. 2007. Maternal antibrain antibodies in autism. Brain, Behavior, and Immunity, 21(3): 351−357. doi: 10.1016/j.bbi.2006.08.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (459) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return