Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Sheng-Yu Luo, Jing-Qian Wang, Cheng Liu, Xin-Ming Gao, Yi-Bo Zhang, Jie Ding, Cong-Cong Hou, Jun-Quan Zhu, Bao Lou, Wei-Liang Shen, Xiong-Fei Wu, Chun-Dan Zhang, Dao-Jun Tang. Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker (Larimichthys crocea) under environmental hypoxia. Zoological Research, 2021, 42(6): 746-760. doi: 10.24272/j.issn.2095-8137.2021.224
Citation: Sheng-Yu Luo, Jing-Qian Wang, Cheng Liu, Xin-Ming Gao, Yi-Bo Zhang, Jie Ding, Cong-Cong Hou, Jun-Quan Zhu, Bao Lou, Wei-Liang Shen, Xiong-Fei Wu, Chun-Dan Zhang, Dao-Jun Tang. Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker (Larimichthys crocea) under environmental hypoxia. Zoological Research, 2021, 42(6): 746-760. doi: 10.24272/j.issn.2095-8137.2021.224

Hif-1α/Hsf1/Hsp70 signaling pathway regulates redox homeostasis and apoptosis in large yellow croaker (Larimichthys crocea) under environmental hypoxia

doi: 10.24272/j.issn.2095-8137.2021.224
Funds:  This work was supported by the National Key Research and Development Program of China (2018YFC1406300), NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (U1809212), Scientific and Technical Project of Zhejiang Province (2021C02069-1, 2016C02055-7), Scientific and Technical Project of Ningbo City (2021Z002, 2015C110005), Ningbo Science and Technology Plan Projects (2018A610228), Teaching and Research Project of Ningbo University (XYL19023), Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, K.C. Wong Magna Fund in Ningbo University
More Information
  • Oxygen is an essential molecule for animal respiration, growth, and survival. Unlike in terrestrial environments, contamination and climate change have led to the frequent occurrence of hypoxia in aquatic environments, thus impacting aquatic animal survival. However, the adaptative mechanisms underlying fish responses to environmental hypoxia remain largely unknown. Here, we used large yellow croaker (Larimichthys crocea) and large yellow croaker fry (LYCF) cells to investigate the roles of the Hif-1α/Hsf1/Hsp70 signaling pathway in the regulation of cellular redox homeostasis, and apoptosis. We confirmed that hypoxia induced the expression of Hif-1α, Hsf1, and Hsp70 in vivo and in vitro. Genetic Hsp70 knockdown/overexpression indicated that Hsp70 was required for maintaining redox homeostasis and resisting oxidative stress in LYCF cells under hypoxic stress. Hsp70 inhibited caspase-dependent intrinsic apoptosis by maintaining normal mitochondrial membrane potential, enhancing Bcl-2 mRNA and protein expression, inhibiting Bax and caspase3 mRNA expression, and suppressing caspase-3 and caspase-9 activation. Hsp70 suppressed caspase-independent intrinsic apoptosis by inhibiting nuclear translocation of apoptosis-inducing factor (AIF) and disturbed extrinsic apoptosis by inactivating caspase-8. Genetic knockdown/overexpression of Hif-1α and dual-luciferase reporter assay indicated that Hif-1α activated the Hsf1 DNA promoter and enhanced Hsf1 mRNA transcription. Hsf1 enhanced Hsp70 mRNA transcription in a similar manner. In summary, the Hif-1α/Hsf1/Hsp70 signaling pathway plays an important role in regulating redox homeostasis and anti-apoptosis in L. crocea under hypoxic stress.
  • loading
  • [1]
    Afolayan AJ, Teng RJ, Eis A, Rana U, Broniowska KA, Corbett JA, et al. 2014. Inducible HSP70 regulates superoxide dismutase-2 and mitochondrial oxidative stress in the endothelial cells from developing lungs. American Journal of Physiology-Lung Cellular and Molecular Physiology, 306(4): L351−L360. doi: 10.1152/ajplung.00264.2013
    Azad P, Ryu J, Haddad GG. 2011. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radical Biology and Medicine, 51(2): 530−538. doi: 10.1016/j.freeradbiomed.2011.05.005
    Baek SH, Lee UY, Park EM, Han MY, Lee YS, Park YM. 2001. Role of protein kinase Cδ in transmitting hypoxia signal to HSF and HIF-1. Journal of Cellular Physiology, 188(2): 223−235. doi: 10.1002/jcp.1117
    Baird NA, Turnbull DW, Johnson EA. 2006. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. Journal of Biological Chemistry, 281(50): 38675−38681. doi: 10.1074/jbc.M608013200
    Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2(8): 469−475. doi: 10.1038/35019501
    Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371): eaam7240. doi: 10.1126/science.aam7240
    Broome CS, Kayani AC, Palomero J, Dillmann WH, Mestril R, Jackson MJ, et al. 2006. Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity. The FASEB Journal, 20(9): 1549−1551. doi: 10.1096/fj.05-4935fje
    Bruick RK, McKnight SL. 2002. Transcription. Oxygen sensing gets a second wind. Science, 295(5556): 807−808. doi: 10.1126/science.1069825
    Calderwood SK, Xie Y, Wang X, Khaleque MA, Chou SD, Murshid A, et al. 2010. Signal transduction pathways leading to heat shock transcription. Signal Transduction Insights, 2: 13−24.
    Chen F, Yu YF, Qian J, Wang YS, Cheng B, Dimitropoulou C, et al. 2012. Opposing actions of heat shock protein 90 and 70 regulate nicotinamide adenine dinucleotide phosphate oxidase stability and reactive oxygen species production. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(12): 2989−2999. doi: 10.1161/ATVBAHA.112.300361
    Cooper RU, Clough LM, Farwell MA, West TL. 2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. Journal of Experimental Marine Biology and Ecology, 279(1–2): 1–20.
    Deane EE, Jia A, Qu Z, Chen JX, Zhang XH, Woo NYS. 2012. Induction of apoptosis in sea bream fibroblasts by Vibrio harveyi haemolysin and evidence for an anti-apoptotic role of heat shock protein 70. Journal of Fish Diseases, 35(4): 287−302. doi: 10.1111/j.1365-2761.2012.01346.x
    Deane EE, Zhou LR, Woo NYS. 2006. Cortisol can be pro-or anti-apoptotic in sea bream cells: Potential role of HSP70 induction for cytoprotection. Molecular and Cellular Endocrinology, 259(1-2): 57−64. doi: 10.1016/j.mce.2006.08.006
    Diao LW, Zhao LL, Qi F, Sun ZD, Zhang QH, Wu NS. 2012. Heat shock protein 70 induced by heat stress protects heterotopically transplanted hearts in rats. Molecular Medicine Reports, 6(4): 729−732. doi: 10.3892/mmr.2012.982
    Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891): 926−929. doi: 10.1126/science.1156401
    Domingos FFT, Thomé RG, Martinelli PM, Sato Y, Bazzoli N, Rizzo E. 2013. Role of HSP70 in the regulation of the testicular apoptosis in a seasonal breeding teleost Prochilodus argenteus from the São Francisco River, Brazil. Microscopy Research & Technique, 76(4): 350−356.
    Doubrovin M, Che JT, Serganova I, Moroz E, Solit DB, Ageyeva L, et al. 2012. Monitoring the induction of heat shock factor 1/heat shock protein 70 expression following 17-allylamino-demethoxygeldanamycin treatment by positron emission tomography and optical reporter gene imaging. Molecular Imaging, 11(1): 67−76.
    Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, et al. 1999. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. The EMBO Journal, 18(7): 1905−1914. doi: 10.1093/emboj/18.7.1905
    Evans CG, Chang L, Gestwicki JE. 2010. Heat shock protein 70 (Hsp70) as an emerging drug target. Journal of Medicinal Chemistry, 53(12): 4585−4602. doi: 10.1021/jm100054f
    Gao XJ, Liu WL, Huang LS, Zhang T, Mei ZS, Wang XX, et al. 2015. HSP70 inhibits stress-induced cardiomyocyte apoptosis by competitively binding to FAF1. Cell Stress and Chaperones, 20(4): 653−661. doi: 10.1007/s12192-015-0589-9
    Gao XM, Mu DL, Hou CC, Zhu JQ, Jin S, Wang CL. 2019. Expression and putative functions of KIFC1 for nuclear reshaping and midpiece formation during spermiogenesis of Phascolosoma esculenta. Gene, 683: 169–183.
    Giffard RG, Han RQ, Emery JF, Duan M, Pittet JF. 2008. Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology, 109(2): 339−348. doi: 10.1097/ALN.0b013e31817f4ce0
    Grilo AL, Mantalaris A. 2019. Apoptosis: a mammalian cell bioprocessing perspective. Biotechnology Advances, 37(3): 459−475. doi: 10.1016/j.biotechadv.2019.02.012
    Gu XH, Hao Y, Wang XL. 2012. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poultry Science, 91(4): 790−799. doi: 10.3382/ps.2011-01628
    Guérin P, El Mouatassim S, Ménézo Y. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2): 175−189. doi: 10.1093/humupd/7.2.175
    Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, et al. 2005. Mechanistic role of heat shock protein 70 in Bcr-Abl–mediated resistance to apoptosis in human acute leukemia cells. Blood, 105(3): 1246−1255. doi: 10.1182/blood-2004-05-2041
    Gupta SC, Siddique HR, Mathur N, Vishwakarma AL, Mishra RK, Saxena DK, et al. 2007. Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster: modulation by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(9): 1382−1394. doi: 10.1016/j.bbagen.2007.05.010
    Hernández-Santana A, Pérez-López V, Zubeldia JM, Jiménez-del-Rio M. 2014. A rhodiola rosea root extract protects skeletal muscle cells against chemically induced oxidative stress by modulating heat shock protein 70 (HSP70) expression. Phytotherapy Research, 28(4): 623−628. doi: 10.1002/ptr.5046
    Jiang BM, Liang PF, Deng GH, Tu ZZ, Liu MD, Xiao XZ. 2011. Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress and Chaperones, 16(2): 143−152. doi: 10.1007/s12192-010-0226-6
    Jiang YB, He RY, Shi YJ, Liang J, Zhao L. 2020. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sciences, 256: 117987. doi: 10.1016/j.lfs.2020.117987
    Kawabe S, Yokoyama Y. 2011. Novel isoforms of heat shock transcription factor 1 are induced by hypoxia in the Pacific oyster Crassostrea gigas. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 315(7): 394–407.
    Klein JA, Ackerman SL. 2003. Oxidative stress, cell cycle, and neurodegeneration. The Journal of Clinical Investigation, 111(6): 785−793. doi: 10.1172/JCI200318182
    Kong FZ, Wang H, Guo JR, Peng ML, Ji H, Yang HM, et al. 2016. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3. In Vitro Cellular & Developmental Biology-Animal, 52(5): 568−575.
    Lazarev VF, Nikotina AD, Mikhaylova ER, Nudler E, Polonik SG, Guzhova IV, et al. 2016. Hsp70 chaperone rescues C6 rat glioblastoma cells from oxidative stress by sequestration of aggregating GAPDH. Biochemical and Biophysical Research Communications, 470(3): 766−771. doi: 10.1016/j.bbrc.2015.12.076
    Leonarduzzi G, Sottero B, Poli G. 2010. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacology & Therapeutics, 128(2): 336−374.
    Lin PY, Folorunso O, Taglialatela G, Pierce A. 2016. Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells. Journal of Neuroscience Research, 94(7): 671−682. doi: 10.1002/jnr.23725
    Liu SG, Ren PY, Wang GY, Yao SX, He XJ. 2015. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food & Function, 6(1): 320−329.
    Liu W, Liu XX, Wu CW, Jiang LH. 2018. Transcriptome analysis demonstrates that long noncoding RNA is involved in the hypoxic response in Larimichthys crocea. Fish Physiology and Biochemistry, 44(5): 1333–1347.
    Lohberger B, Steinecker-Frohnwieser B, Stuendl N, Kaltenegger H, Leithner A, Rinner B. 2016. The proteasome inhibitor bortezomib affects chondrosarcoma cells via the mitochondria-caspase dependent pathway and enhances death receptor expression and autophagy. PLoS One, 11(12): e0168193. doi: 10.1371/journal.pone.0168193
    Lu JK, Yu ZB, Mu CK, Li RH, Song WW, Wang CL. 2017. Characterization and functional analysis of a novel C-type lectin from the swimming crab Portunus trituberculatus. Fish & Shellfish Immunology, 64: 185–192.
    Luo SY, Gao XM, Ding J, Liu C, Du C, Hou CC, et al. 2019. Transcriptome sequencing reveals the traits of spermatogenesis and testicular development in large yellow croaker (Larimichthys crocea). Genes, 10(12): 958. doi: 10.3390/genes10120958
    Luo SY, Liu C, Ding J, Gao XM, Wang JQ, Zhang YB, et al. 2021. Scavenging reactive oxygen species is a potential strategy to protect Larimichthys crocea against environmental hypoxia by mitigating oxidative stress. Zoological Research, 42(5): 592−605. doi: 10.24272/j.issn.2095-8137.2021.079
    Lv ZM, Li CH, Zhang PJ, Wang ZH, Zhang WW, Jin CH. 2015. miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus. Fish & Shellfish Immunology, 45(2): 431–436.
    Majno G, Joris I. 1995. Apoptosis, oncosis, and necrosis. An overview of cell death. The American Journal of Pathology, 146(1): 3−15.
    Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ. 2014. Chaperone action at the single-molecule level. Chemical Reviews, 114(1): 660−676. doi: 10.1021/cr400326k
    Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, et al. 2006. Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke, 37(2): 507−512. doi: 10.1161/01.STR.0000199057.00365.20
    Michaud MR, Teets NM, Peyton JT, Blobner BM, Denlinger DL. 2011. Heat shock response to hypoxia and its attenuation during recovery in the flesh fly. Sarcophaga crassipalpis. Journal of Insect Physiology, 57(1): 203−210. doi: 10.1016/j.jinsphys.2010.11.007
    Ming JH, Ye JY, Zhang YX, Yang X, Shao XP, Qiang J, et al. 2019. Dietary optimal reduced glutathione improves innate immunity, oxidative stress resistance and detoxification function of grass carp (Ctenopharyngodon idella) against microcystin-LR. Aquaculture, 498: 594−605. doi: 10.1016/j.aquaculture.2018.09.014
    Mohindra V, Tripathi RK, Singh RK, Lal KK. 2013. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1α, -2α and -3α in hypoxia-tolerant Indian catfish, Clarias batrachus [Linnaeus, 1758]. Molecular Biology Reports, 40(10): 5805−5815. doi: 10.1007/s11033-013-2685-1
    Ondricek K, Thomas P. 2018. Effects of hypoxia exposure on apoptosis and expression of membrane steroid receptors, ZIP9, mPRα, and GPER in Atlantic croaker ovaries. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 224: 84−92.
    Padmini E, Tharani J. 2014. Heat-shock protein 70 modulates apoptosis signal-regulating kinase 1 in stressed hepatocytes of Mugil cephalus. Fish Physiology and Biochemistry, 40(5): 1573–1585.
    Pan WL, Wong JH, Fang EF, Chan YS, Ng TB, Cheung RCF. 2014. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochemical Pharmacology, 89(3): 329−339. doi: 10.1016/j.bcp.2014.03.004
    Park EM, Lee IJ, Kim SH, Song GY, Park YM. 2003. Inhibitory effect of a naphthazarin derivative, S64, on heat shock factor (Hsf) activation and glutathione status following hypoxia. Cell Biology and Toxicology, 19(5): 273−284. doi: 10.1023/B:CBTO.0000004935.81879.d7
    Peng W, Zhang Y, Zheng M, Cheng HP, Zhu WZ, Cao CM, et al. 2010. Cardioprotection by CaMKII-δB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circulation Research, 106(1): 102−110. doi: 10.1161/CIRCRESAHA.109.210914
    Rahman MS, Thomas P. 2011. Characterization of three IGFBP mRNAs in Atlantic croaker and their regulation during hypoxic stress: potential mechanisms of their upregulation by hypoxia. American Journal of Physiology-Endocrinology and Metabolism, 301(4): E637−E648. doi: 10.1152/ajpendo.00168.2011
    Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, et al. 2001. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3(9): 839−843. doi: 10.1038/ncb0901-839
    Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M, Saroglia M. 2012. HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Molecular Biology Reports, 39(4): 4009−4015. doi: 10.1007/s11033-011-1181-8
    Russo A, Palumbo M, Scifo C, Cardile V, Barcellona ML, Renis M. 2001. Ethanol-induced oxidative stress in rat astrocytes: role of HSP70. Cell Biology and Toxicology, 17(3): 153−168. doi: 10.1023/A:1011936313510
    Saini J, Sharma PK. 2018. Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Current Drug Targets, 19(13): 1478−1490. doi: 10.2174/1389450118666170823121248
    Semenza GL. 2004. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology, 19(4): 176−182. doi: 10.1152/physiol.00001.2004
    Semenza GL. 2009. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Seminars in Cancer Biology, 19(1): 12−16. doi: 10.1016/j.semcancer.2008.11.009
    Stankiewicz AR, Lachapelle G, Foo CPZ, Radicioni SM, Mosser DD. 2005. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. Journal of Biological Chemistry, 280(46): 38729−38739. doi: 10.1074/jbc.M509497200
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718): 441−446. doi: 10.1038/17135
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731−2739. doi: 10.1093/molbev/msr121
    Troyanova NI, Shevchenko MA, Boyko AA, Mirzoev PP, Pertseva MA, Kovalenko EI, et al. 2015. Modulating effect of extracellular hsp70 on generation of reactive oxigen species in populations of phagocytes. Russian Journal of Bioorganic Chemistry, 41(3): 271−279. doi: 10.1134/S1068162015030097
    Tsuchida S, Arai Y, Takahashi KA, Kishida T, Terauchi R, Honjo K, et al. 2014. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions. Journal of Orthopaedic Research, 32(8): 975−980. doi: 10.1002/jor.22623
    Ueng SWN, Yuan LJ, Lin SS, Niu CC, Chan YS, Wang IC, et al. 2013. Hyperbaric oxygen treatment prevents nitric oxide-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70. Journal of Orthopaedic Research, 31(3): 376−384. doi: 10.1002/jor.22235
    Wang QF, Shen WL, Hou CC, Liu C, Wu XF, Zhu JQ. 2017. Physiological responses and changes in gene expression in the large yellow croaker Larimichthys crocea following exposure to hypoxia. Chemosphere, 169: 418−427. doi: 10.1016/j.chemosphere.2016.11.099
    Wang XH, Li QH, Mu PF, Guan YY, Chen XH, Ao JQ. 2020. Large yellow croaker peroxiredoxin IV protect cells against oxidative damage and apoptosis. Molecular Immunology, 127: 150−156. doi: 10.1016/j.molimm.2020.08.019
    Wenger RH, Stiehl DP, Camenisch G. 2005. Integration of oxygen signaling at the consensus HRE. Science's STKE:Signal Transduction Knowledge Environment, 2005(306): re12.
    Williams TA, Bergstrome JC, Scott J, Bernier NJ. 2017. CRF and urocortin 3 protect the heart from hypoxia/reoxygenation-induced apoptosis in zebrafish. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 313(2): R91−R100. doi: 10.1152/ajpregu.00045.2017
    Wu C. 1995. Heat shock transcription factors: structure and regulation. Annual Review of Cell and Developmental Biology, 11: 441−469. doi: 10.1146/annurev.cb.11.110195.002301
    Xia LM, Tian DA, Zhang Q, Yan W, Zhu Q, Luo M, et al. 2009. Hypoxia induces heat shock protein HSP70-2 expression in a HIF-1 dependent manner. Chinese Journal of Hepatology, 17(3): 207−212. (in Chinese)
    Xu NW, Chen Y, Liu WE, Chen YJ, Fan ZM, Liu M, et al. 2018. Inhibition of JAK2/STAT3 signaling pathway suppresses proliferation of Burkitt's lymphoma raji cells via cell cycle progression, apoptosis, and oxidative stress by modulating HSP70. Medical Science Monitor, 24: 6255−6263. doi: 10.12659/MSM.910170
    Yang S, Yan T, Wu H, Xiao Q, Fu HM, Luo J, et al. 2017. Acute hypoxic stress: Effect on blood parameters, antioxidant enzymes, and expression of HIF-1alpha and GLUT-1 genes in largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 67: 449−458.
    Yang XR, Gao YJ, Zhao MH, Wang XY, Zhou H, Zhang AY. 2020. Cloning and identification of grass carp transcription factor HSF1 and its characterization involving the production of fish HSP70. Fish Physiology and Biochemistry, 46(6): 1933−1945. doi: 10.1007/s10695-020-00842-4
    Yenari MA, Liu JL, Zheng Z, Vexler ZS, Lee JE, Giffard RG. 2005. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Annals of the New York Academy of Sciences, 1053: 74−83. doi: 10.1196/annals.1344.007
    Yuan ZH, Liu SK, Yao J, Zeng QF, Tan SX, Liu ZJ. 2016. Expression of Bcl-2 genes in channel catfish after bacterial infection and hypoxia stress. Developmental & Comparative Immunology, 65: 79−90.
    Yurinskaya MM, Kochetkova OY, Shabarchina LI, Antonova OY, Suslikov AV, Evgen'ev MB, et al. 2017. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress and Chaperones, 22(1): 163−171. doi: 10.1007/s12192-016-0743-z
    Yurinskaya MM, Mitkevich VA, Kozin SA, Evgen'ev MB, Makarov AA, Vinokurov MG. 2015. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Aβ(1–42). Cell Death & Disease, 6(11): e1977.
    Zeng FX, Tee C, Liu M, Sherry JP, Dixon B, Duncker BP, et al. 2014. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells. Aquatic Toxicology, 146: 45−51. doi: 10.1016/j.aquatox.2013.10.026
    Zhong H, Mabjeesh NJ, Willard MT, Simons JW. 2002. Nuclear expression of hypoxia-inducible factor 1α protein is heterogeneous in human malignant cells under normoxic conditions. Cancer Letters, 181(2): 233−238. doi: 10.1016/S0304-3835(02)00053-8
  • ZR-2021-224 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (560) PDF downloads(75) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint