Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Kuan-Xiang Sun, Xiao-Yan Jiang, Xiao Li, Yu-Jing Su, Ju-Lin Wang, Lin Zhang, Ye-Ming Yang, Xian-Jun Zhu. Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration. Zoological Research, 2021, 42(5): 650-659. doi: 10.24272/j.issn.2095-8137.2021.195
Citation: Kuan-Xiang Sun, Xiao-Yan Jiang, Xiao Li, Yu-Jing Su, Ju-Lin Wang, Lin Zhang, Ye-Ming Yang, Xian-Jun Zhu. Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration. Zoological Research, 2021, 42(5): 650-659. doi: 10.24272/j.issn.2095-8137.2021.195

Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration

doi: 10.24272/j.issn.2095-8137.2021.195
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (81770950, 81970841), Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2019-12M-5-032), and Department of Science and Technology of Sichuan Province (21ZDYF4279, 2020JDZH0026, 2021JDZH0022)
More Information
  • Corresponding author: E-mail: xjzhu@uestc.edu.cn
  • Received Date: 2021-08-03
  • Accepted Date: 2021-08-30
  • Available Online: 2021-08-31
  • Publish Date: 2021-09-18
  • Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The β subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null (mdx) mice and BaCl2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl2-injection. Compared to the control mice, the cKO mice showed decreased Pax7+ and MYH3+ SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Alfaro LAS, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, et al. 2011. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells, 29(12): 2030−2041. doi: 10.1002/stem.759
    Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H, et al. 2016. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica, 101(5): 559−565. doi: 10.3324/haematol.2016.142273
    Bichsel C, Neeld D, Hamazaki T, Chang LJ, Yang LJ, Terada N, et al. 2013. Direct reprogramming of fibroblasts to myocytes via bacterial injection of MyoD protein. Cellular Reprogramming, 15(2): 117−125. doi: 10.1089/cell.2012.0058
    Bretscher MS. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature: New Biology, 236(61): 11−12. doi: 10.1038/newbio236011a0
    Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JCM. 2010. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. Journal of Biological Chemistry, 285(52): 40562−40572. doi: 10.1074/jbc.M110.139543
    Bulfield G, Siller WG, Wight PA, Moore KJ. 1984. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 81(4): 1189−1192. doi: 10.1073/pnas.81.4.1189
    Bull LN, van Eijk MJT, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, et al. 1998. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nature Genetics, 18(3): 219−224. doi: 10.1038/ng0398-219
    Cao CJ, Wang Y, Husain S, Soteropoulos P, Xue CY. 2019. A mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans. mBio, 10(6): e01952−19.
    Chen S, Wang JY, Muthusamy BP, Liu K, Zare S, Andersen RJ, et al. 2006. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic, 7(11): 1503−1517. doi: 10.1111/j.1600-0854.2006.00485.x
    Cornelison DDW, Wold BJ. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Developmental Biology, 191(2): 270−283. doi: 10.1006/dbio.1997.8721
    Crist CG, Montarras D, Buckingham M. 2012. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell, 11(1): 118−126. doi: 10.1016/j.stem.2012.03.011
    Das A, Slaughter BD, Unruh JR, Bradford WD, Alexander R, Rubinstein B, et al. 2012. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nature Cell Biology, 14(3): 304−310. doi: 10.1038/ncb2444
    Diao YR, Guo X, Li YF, Sun K, Lu LN, Jiang L, et al. 2012. Pax3/7BP is a Pax7- and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell, 11(2): 231−241. doi: 10.1016/j.stem.2012.05.022
    Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. 2015. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine, 21(12): 1455−1463. doi: 10.1038/nm.3990
    Feige P, Rudnicki MA. 2018. Muscle stem cells. Current Biology, 28(10): R589−R590. doi: 10.1016/j.cub.2018.02.064
    Friday BB, Mitchell PO, Kegley KM, Pavlath GK. 2003. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation, 71(3): 217−227. doi: 10.1046/j.1432-0436.2003.710303.x
    Füchtbauer EM, Westphal H. 1992. MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Developmental Dynamics, 193(1): 34−39. doi: 10.1002/aja.1001930106
    Gayraud-Morel B, Chrétien F, Jory A, Sambasivan R, Negroni E, Flamant P, et al. 2012. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. Journal of Cell Science, 125(7): 1738−1749.
    Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JMN, et al. 2016. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science, 353(6295): aad9969. doi: 10.1126/science.aad9969
    Holthuis JCM, Levine TP. 2005. Lipid traffic: floppy drives and a superhighway. Nature Reviews Molecular Cell Biology, 6(3): 209−220. doi: 10.1038/nrm1591
    Kato U, Inadome H, Yamamoto M, Emoto K, Kobayashi T, Umeda M. 2013. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. Journal of Biological Chemistry, 288(7): 4922−4934. doi: 10.1074/jbc.M112.402701
    Kuang S, Chargé SB, Seale P, Huh M, Rudnicki MA. 2006. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. The Journal of Cell Biology, 172(1): 103−113. doi: 10.1083/jcb.200508001
    Kuang SH, Kuroda K, Le Grand F, Rudnicki MA. 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell, 129(5): 999−1010. doi: 10.1016/j.cell.2007.03.044
    Li CC, Vargas-Franco D, Saha M, Davis RM, Manko KA, Draper I, et al. 2021. Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration. FEBS Open Bio, 11(1): 114−123. doi: 10.1002/2211-5463.13031
    Liu LM, Zhang LL, Zhang L, Yang F, Zhu XD, Lu ZJ, et al. 2017. Hepatic Tmem30a Deficiency causes intrahepatic cholestasis by impairing expression and localization of bile salt transporters. The American Journal of Pathology, 187(12): 2775−2787. doi: 10.1016/j.ajpath.2017.08.011
    Liu WJ, Peng L, Tian WL, Li Y, Zhang P, Sun KX, et al. 2021. Loss of phosphatidylserine flippase β-subunit Tmem30a in podocytes leads to albuminuria and glomerulosclerosis. Disease Models & Mechanisms, 14(6): dmm048777.
    Londhe P, Davie JK. 2011. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skeletal Muscle, 1(1): 14. doi: 10.1186/2044-5040-1-14
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. 2011. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development, 138(17): 3625−3637. doi: 10.1242/dev.064162
    Odelberg SJ, Kollhoff A, Keating MT. 2000. Dedifferentiation of mammalian myotubes induced by msx1. Cell, 103(7): 1099−1109. doi: 10.1016/S0092-8674(00)00212-9
    Park J, Choi Y, Jung E, Lee SH, Sohn JW, Chung WS. 2021. Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses. The EMBO Journal, 40(15): e107121.
    Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, et al. 2008. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology, 47(1): 268−278.
    Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, et al. 2010. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell, 143(7): 1059−1071. doi: 10.1016/j.cell.2010.11.039
    Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K. 2004. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Molecular Biology of the Cell, 15(7): 3418−3432. doi: 10.1091/mbc.e03-11-0829
    Sambasivan R, Tajbakhsh S. 2007. Skeletal muscle stem cell birth and properties. Seminars in Cell & Developmental Biology, 18(6): 870−882.
    Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. 2015. Developmental myosins: expression patterns and functional significance. Skeletal Muscle, 5(1): 22. doi: 10.1186/s13395-015-0046-6
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell, 102(6): 777−786. doi: 10.1016/S0092-8674(00)00066-0
    Sebastian TT, Baldridge RD, Xu P, Graham TR. 2012. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1821(8): 1068−1077. doi: 10.1016/j.bbalip.2011.12.007
    Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. 2014. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 344(6188): 1164−1168. doi: 10.1126/science.1252809
    Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. 2006. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biology, 8(7): 677−687. doi: 10.1038/ncb1425
    Tadini-Buoninsegni F, Mikkelsen SA, Mogensen LS, Molday RS, Andersen JP. 2019. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic. Proceedings of the National Academy of Sciences of the United States of America, 116(33): 16332−16337. doi: 10.1073/pnas.1910211116
    Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. 1988. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science, 242(4877): 405−411. doi: 10.1126/science.3175662
    Tidball JG. 2011. Mechanisms of muscle injury, repair, and regeneration. Comprehensive Physiology, 1(4): 2029−2062.
    Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, et al. 2018. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nature Communications, 9(1): 2049. doi: 10.1038/s41467-018-04436-w
    Tu MK, Borodinsky LN. 2014. Spontaneous calcium transients manifest in the regenerating muscle and are necessary for skeletal muscle replenishment. Cell Calcium, 56(1): 34−41. doi: 10.1016/j.ceca.2014.04.004
    Tu MK, Levin JB, Hamilton AM, Borodinsky LN. 2016. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium, 59(2-3): 91−97. doi: 10.1016/j.ceca.2016.02.005
    van der Velden LM, Wichers CGK, van Breevoort AED, Coleman JA, Molday RS, Berger R, et al. 2010. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. Journal of Biological Chemistry, 285(51): 40088−40096. doi: 10.1074/jbc.M110.139006
    Webster MT, Harvey T, Fan CM. 2016. Quantitative 3D time lapse imaging of muscle progenitors in skeletal muscle of live mice. Bio-Protocol, 6(24): e2066.
    Yang YM, Liu WJ, Sun KX, Jiang L, Zhu XJ. 2019. Tmem30a deficiency leads to retinal rod bipolar cell degeneration. Journal of Neurochemistry, 148(3): 400−412. doi: 10.1111/jnc.14643
    Yang YM, Sun KX, Liu WJ, Li X, Tian WL, Shuai P, et al. 2021. The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion. Molecular Therapy, 29(9): 2854−2872. doi: 10.1016/j.ymthe.2021.04.026
    Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. 2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?. Journal of Cell Biology, 166(3): 347−357. doi: 10.1083/jcb.200312007
    Zhang L, Yang YM, Li SJ, Zhang SS, Zhu X, Tai ZF, et al. 2017. Loss of Tmem30a leads to photoreceptor degeneration. Scientific Reports, 7(1): 9296. doi: 10.1038/s41598-017-09506-5
    Zhang SS, Liu WJ, Yang YM, Sun KX, Li SJ, Xu HJ, et al. 2019. TMEM30A deficiency in endothelial cells impairs cell proliferation and angiogenesis. Journal of Cell Science, 132(7): jcs225052.
  • ZR-2021-195 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (710) PDF downloads(78) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint