Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Nai-Yi Xu, Wei Si, Ming Li, Mian Gong, Jean-Marc Larivière, Hojjat Asadollahpour Nanaei, Pei-Pei Bian, Yu Jiang, Xin Zhao. Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens. Zoological Research, 2021, 42(6): 710-720. doi: 10.24272/j.issn.2095-8137.2021.189
Citation: Nai-Yi Xu, Wei Si, Ming Li, Mian Gong, Jean-Marc Larivière, Hojjat Asadollahpour Nanaei, Pei-Pei Bian, Yu Jiang, Xin Zhao. Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens. Zoological Research, 2021, 42(6): 710-720. doi: 10.24272/j.issn.2095-8137.2021.189

Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens

doi: 10.24272/j.issn.2095-8137.2021.189
Funds:  The study was supported by the James McGill Professorship (to X.Z.) and National Natural Science Foundation of China (31822052 to Y.J.)
More Information
  • The Chantecler chicken, a unique Canadian indigenous breed, is well adapted to extremely cold environments. However, its genetic characteristics have not been well studied. Here, we analyzed the whole genomes of 10 Chantecler chickens and 121 worldwide chickens, which indicated that Chantecler chickens were derived from commercial chickens and exhibit a high level of inbreeding. Based on a genome-wide scan, we identified two vital candidate regions containing ME3 and ZNF536, which are related to fat metabolism and nervous system in cold adaptation, respectively. We also found that the genetic mechanism of cold adaptation in Chantecler chickens differed from that of chickens from other cold regions, such as northern China. Our study indicated that specialized commercial chickens in the early 20th century contained sufficient genetic diversity to adapt to extreme cold environments over a very short time. These findings enrich our understanding of the adaptive potential of commercial species.
  • loading
  • [1]
    Adolph EF, Molnar GW. 1946. Exchanges of heat and tolerances to cold in men exposed to outdoor weather. American Journal of Physiology, 146(4): 507−537. doi: 10.1152/ajplegacy.1946.146.4.507
    [2]
    Ai HS, Fang XD, Yang B, Huang ZY, Chen H, Mao LK, et al. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47(3): 217−225. doi: 10.1038/ng.3199
    [3]
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    [4]
    Barnett SA. 1959. The skin and hair of mice living at a low environmental temperature. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 44(1): 35−42. doi: 10.1113/expphysiol.1959.sp001374
    [5]
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [6]
    Boulant JA, Dean JB. 1986. Temperature receptors in the central nervous system. Annual Review of Physiology, 48: 639−654. doi: 10.1146/annurev.ph.48.030186.003231
    [7]
    Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. 2009. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325(5938): 318−321. doi: 10.1126/science.1174462
    [8]
    Browning SR, Browning BL. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. American Journal of Human Genetics, 81(5): 1084−1097. doi: 10.1086/521987
    [9]
    Cai YD, Fu WW, Cai DW, Heller R, Zheng ZQ, Wen J, et al. 2020. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China. Molecular Biology and Evolution, 37(7): 2099−2109. doi: 10.1093/molbev/msaa103
    [10]
    Cannon B, Nedergaard J. 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1): 277−359. doi: 10.1152/physrev.00015.2003
    [11]
    Chung SS, MacPhee KG, Goodridge AG. 1999. Effect of the CCAAT/enhancer binding protein on expression of the gene for chicken malic enzyme. Archives of Biochemistry and Biophysics, 364(1): 30−41. doi: 10.1006/abbi.1998.1089
    [12]
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [13]
    Ekarius C. 2007. Storey's Illustrated Guide to Poultry Breeds: Chickens, Ducks, Geese, Turkeys, Emus, Guinea Fowl, Ostriches, Partridges, Peafowl, Pheasants, Quails, Swans. Massachusetts: Storey Publishing.
    [14]
    Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jørgensen ME, et al. 2015. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 349(6254): 1343−1347. doi: 10.1126/science.aab2319
    [15]
    Hagedorn M. 2011. PRCP: a key to blood vessel homeostasis. Blood, 117(14): 3705−3706. doi: 10.1182/blood-2011-02-335992
    [16]
    Gburcik V, Cawthorn WP, Nedergaard J, Timmons JA, Cannon B. 2012. An essential role for Tbx15 in the differentiation of brown and "brite" but not white adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 303(8): E1053−E1060. doi: 10.1152/ajpendo.00104.2012
    [17]
    Hallmark B, Karafet TM, Hsieh PH, Osipova LP, Watkins JC, Hammer MF. 2019. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Molecular Biology and Evolution, 36(2): 315−327. doi: 10.1093/molbev/msy211
    [18]
    Herrera MB, Kraitsek S, Alcalde JA, Quiroz D, Revelo H, Alvarez LA, et al. 2020. European and Asian contribution to the genetic diversity of mainland South American chickens. Royal Society Open Science, 7(2): 191558. doi: 10.1098/rsos.191558
    [19]
    Hofmann T, Schaefer M, Schultz G, Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences of the United States of America, 99(11): 7461−7466. doi: 10.1073/pnas.102596199
    [20]
    Huan JL, Wang LS, Xing L, Qin XJ, Feng LB, Pan XF, et al. 2014. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-Estradiol (E2). Gene, 533(1): 346−355. doi: 10.1016/j.gene.2013.08.027
    [21]
    Hung BS, Wang XQ, Rothnagel JA, Cam GR. 2001. Characterization of mouse Frizzled-3 expression in hair follicle development and identification of the human homolog in keratinocytes. Journal of Investigative Dermatology, 116(6): 940−946. doi: 10.1046/j.1523-1747.2001.01336.x
    [22]
    Im JY, Lee KW, Won KJ, Kim BK, Ban HS, Yoon SH, et al. 2016. DNA damage-induced apoptosis suppressor (DDIAS), a novel target of NFATc1, is associated with cisplatin resistance in lung cancer. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(1): 40−49. doi: 10.1016/j.bbamcr.2015.10.011
    [23]
    Innan H, Kim Y. 2008. Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. Genetics, 179(3): 1713−1720. doi: 10.1534/genetics.108.086835
    [24]
    Jiang P, Du WJ, Mancuso A, Wellen KE, Yang XL. 2013. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature, 493(7434): 689−693. doi: 10.1038/nature11776
    [25]
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587−589. doi: 10.1038/nmeth.4285
    [26]
    Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1): W256−W259. doi: 10.1093/nar/gkz239
    [27]
    Li DY, Che TD, Chen BL, Tian SL, Zhou XM, Zhang GL, et al. 2017. Genomic data for 78 chickens from 14 populations. Gigascience, 6(6): gix026.
    [28]
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [29]
    Li Y, Wu DD, Boyko AR, Wang GD, Wu SF, Irwin DM, et al. 2014. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Molecular Biology and Evolution, 31(5): 1200−1205. doi: 10.1093/molbev/msu070
    [30]
    Librado P, Der Sarkissian C, Ermini L, Schubert M, Jónsson H, Albrechtsen A, et al. 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences of the United States of America, 112(50): E6889−E6897. doi: 10.1073/pnas.1513696112
    [31]
    Liu SP, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong ZJ, et al. 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell, 157(4): 785−794. doi: 10.1016/j.cell.2014.03.054
    [32]
    Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, et al. 2014. Adaptations to climate-mediated selective pressures in sheep. Molecular Biology and Evolution, 31(12): 3324−3343. doi: 10.1093/molbev/msu264
    [33]
    Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI, Perry GH, et al. 2015. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the arctic. Cell Reports, 12(2): 217−228. doi: 10.1016/j.celrep.2015.06.027
    [34]
    Marks M, Pennimpede T, Lange L, Grote P, Herrmann BG, Wittler L. 2016. Analysis of the Fam181 gene family during mouse development reveals distinct strain-specific expression patterns, suggesting a role in nervous system development and function. Gene, 575(2): 438−451. doi: 10.1016/j.gene.2015.09.035
    [35]
    Masoro EJ. 1966. Effect of cold on metabolic use of lipids. Physiological Reviews, 46(1): 67−101. doi: 10.1152/physrev.1966.46.1.67
    [36]
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [37]
    McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, et al. 2008. Runs of homozygosity in European populations. American Journal of Human Genetics, 83(3): 359−372. doi: 10.1016/j.ajhg.2008.08.007
    [38]
    Miao BP, Wang Z, Li YX. 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan Plateau. Molecular Biology and Evolution, 34(3): 734−743.
    [39]
    Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, et al. 2013. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 110(3): 277−282. doi: 10.1038/hdy.2012.83
    [40]
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [41]
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan YP, et al. 2012. Ancient admixture in human history. Genetics, 192(3): 1065−1093. doi: 10.1534/genetics.112.145037
    [42]
    Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics, 2(12): e190. doi: 10.1371/journal.pgen.0020190
    [43]
    Pongratz RL, Kibbey RG, Shulman GI, Cline GW. 2007. Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. Journal of Biological Chemistry, 282(1): 200−207. doi: 10.1074/jbc.M602954200
    [44]
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [45]
    Qin Z, Ren FL, Xu XL, Ren YM, Li HG, Wang YY, et al. 2009. ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Molecular and Cellular Biology, 29(13): 3633−3643. doi: 10.1128/MCB.00362-09
    [46]
    Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, et al. 2012. The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8): 946−949. doi: 10.1038/ng.2343
    [47]
    Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464(7288): 587−591. doi: 10.1038/nature08832
    [48]
    Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, et al. 2006. Positive natural selection in the human lineage. Science, 312(5780): 1614−1620. doi: 10.1126/science.1124309
    [49]
    Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C, et al. 2003. Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 112(4): 387−399. doi: 10.1007/s00439-002-0896-y
    [50]
    Signore AV, Yang YZ, Yang QY, Qin G, Moriyama H, Ge RL, et al. 2019. Adaptive changes in hemoglobin function in high-altitude Tibetan canids were derived via gene conversion and introgression. Molecular Biology and Evolution, 36(10): 2227−2237. doi: 10.1093/molbev/msz097
    [51]
    Sinding MHS, Gopalakrishnan S, Ramos-Madrigal J, De Manuel M, Pitulko VV, Kuderna L, et al. 2020. Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science, 368(6498): 1495−1499. doi: 10.1126/science.aaz8599
    [52]
    Smith RE. 1962. Cold acclimation—an altered steady state. Journal of the American Medical Association, 179(12): 948−954. doi: 10.1001/jama.1962.03050120026006
    [53]
    Storey AA, Ramírez JM, Quiroz D, Burley DV, Addison DJ, Walter R, et al. 2007. Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proceedings of the National Academy of Sciences of the United States of America, 104(25): 10335−10339. doi: 10.1073/pnas.0703993104
    [54]
    Szpiech ZA, Hernandez RD. 2014. Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution, 31(10): 2824−2827. doi: 10.1093/molbev/msu211
    [55]
    Thyme SB, Pieper LM, Li EH, Pandey S, Wang YQ, Morris NS, et al. 2019. Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell, 177(2): 478−491. doi: 10.1016/j.cell.2019.01.048
    [56]
    Wang K, Li MY, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16): e164. doi: 10.1093/nar/gkq603
    [57]
    Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, et al. 2015. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Molecular Biology and Evolution, 32(7): 1880−1889. doi: 10.1093/molbev/msv071
    [58]
    Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LAF, Li M, et al. 2020. 863 genomes reveal the origin and domestication of chicken. Cell Research, 30(8): 693−701. doi: 10.1038/s41422-020-0349-y
    [59]
    Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38(6): 1358−1370.
    [60]
    Wise Jr EM, Ball EG. 1964. Malic enzyme and lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 52(5): 1255−1263. doi: 10.1073/pnas.52.5.1255
    [61]
    Wu HG, Guang XM, Al-Fageeh MB, Cao JW, Pan SK, Zhou HM, et al. 2014. Camelid genomes reveal evolution and adaptation to desert environments. Nature Communications, 5(1): 5188. doi: 10.1038/ncomms6188
    [62]
    Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39(S2): W316−W322.
    [63]
    Yang J, Li WR, Lv FH, He SG, Tian SL, Peng WF, et al. 2016. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution, 33(10): 2576−2592. doi: 10.1093/molbev/msw129
    [64]
    Yang ZH, Shi H, Ma PC, Zhao SL, Kong QH, Bian TH, et al. 2018. Darwinian positive selection on the pleiotropic effects of KITLG explain skin pigmentation and winter temperature adaptation in Eurasians. Molecular Biology and Evolution, 35(9): 2272−2283. doi: 10.1093/molbev/msy136
    [65]
    Yi GQ, Qu LJ, Liu JF, Yan YY, Xu GY, Yang N. 2014. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics, 15(1): 962. doi: 10.1186/1471-2164-15-962
    [66]
    Zhang C, Dong SS, Xu JY, He WM, Yang TL. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 35(10): 1786−1788. doi: 10.1093/bioinformatics/bty875
  • ZR-2021-189 Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1111) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return