Volume 42 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Elise Savier, Madineh Sedigh-Sarvestani, Ralf Wimmer, David Fitzpatrick. A bright future for the tree shrew in neuroscience research: Summary from the inaugural Tree Shrew Users Meeting. Zoological Research, 2021, 42(4): 478-481. doi: 10.24272/j.issn.2095-8137.2021.178
Citation: Elise Savier, Madineh Sedigh-Sarvestani, Ralf Wimmer, David Fitzpatrick. A bright future for the tree shrew in neuroscience research: Summary from the inaugural Tree Shrew Users Meeting. Zoological Research, 2021, 42(4): 478-481. doi: 10.24272/j.issn.2095-8137.2021.178

A bright future for the tree shrew in neuroscience research: Summary from the inaugural Tree Shrew Users Meeting

doi: 10.24272/j.issn.2095-8137.2021.178
Funds:  This work was supported by the National Institutes of Health Grant EY032327 (to D.F.)
More Information
  • Corresponding author: E-mail: els6f@virginia.edu
  • Received Date: 2021-05-21
  • Accepted Date: 2021-05-25
  • Available Online: 2021-05-26
  • Publish Date: 2021-07-18
  • Tree shrews (Tupaia spp.) have been used in neuroscience research since the 1960s due to their evolutionary proximity to primates. The use of and interest in this animal model have recently increased, in part due to the adaptation of modern neuroscience tools in this species. These tools include quantitative behavioral assays, calcium imaging, optogenetics and transgenics. To facilitate the exchange and development of these new technologies and associated research findings, we organized the inaugural “Tree Shrew Users Meeting” which was held online due to the COVID-19 pandemic. Here, we review this meeting and discuss the history of tree shrews as an animal model in neuroscience research and summarize the current themes being investigated using this animal, as well as future directions.
  • loading
  • [1]
    Casagrande VA, Diamond IT. 1974. Ablation study of the superior colliculus in the tree shrew (Tupaia glis). The Journal of Comparative Neurology, 156(2): 207−237. doi: 10.1002/cne.901560206
    Darwish M, Nishizono H, Uosaki H, Sawada H, Sadahiro T, Ieda M, et al. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. Journal of Neuroscience Methods, 317: 149−156. doi: 10.1016/j.jneumeth.2019.01.010
    Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo LH, et al. 2016. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 19(12): 1743−1749. doi: 10.1038/nn.4430
    Drenhaus U, Rager G, Eggli P, Kretz R. 2006. On the postnatal development of the striate cortex (V1) in the tree shrew (Tupaia belangeri). European Journal of Neuroscience, 24(2): 479−490. doi: 10.1111/j.1460-9568.2006.04916.x
    El Hamdaoui M, Levy AM, Gaonkar M, Gawne TJ, Girkin CA, Samuels BC, et al. 2021. Effect of scleral crosslinking using multiple doses of genipin on experimental progressive myopia in tree shrews. Translational Vision Science & Technology, 10(5): 1. doi: 10.1167/tvst.10.5.1
    Emmons LH, Greene HW. 2000. Tupai: A Field Study of Bornean Treeshrews. Berkeley: University of California Press.
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426. doi: 10.1038/ncomms2416
    Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi: 10.24272/j.issn.2095-8137.2019.063
    Fuchs E. 2015. Tree shrews at the German Primate Center. Primate Biology, 2(1): 111−118. doi: 10.5194/pb-2-111-2015
    Gawne TJ, Ward AH, Norton TT. 2017. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Research, 140: 55−65. doi: 10.1016/j.visres.2017.07.011
    Hubrecht R, Kirkwood J. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th ed. Chichester: Wiley.
    Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, et al. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5851): 792−794. doi: 10.1126/science.1147555
    Johnson EN, Westbrook T, Shayesteh R, Chen EL, Schumacher JW, Fitzpatrick D, et al. 2019. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. Journal of Comparative Neurology, 527(1): 328−344. doi: 10.1002/cne.24377
    Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi: 10.1016/j.beproc.2012.03.019
    Le Gros Clark WE. 1924. On the brain of the tree-shrew (Tupaia minor). Proceedings of the Zoological Society of London, 94(4): 1053−1074. doi: 10.1111/j.1096-3642.1924.tb03328.x
    Lee KS, Huang XY, Fitzpatrick D. 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601): 90−94. doi: 10.1038/nature17941
    Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2): 241−252. doi: 10.1038/cr.2016.156
    Lyon Jr MW. 1913. Treeshrews: an account of the mammalian family Tupaiidae. Proceedings of the United States National Museum, 45(1976): 1−188. doi: 10.5479/si.00963801.45-1976.1
    Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. 2021. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). Journal of Comparative Neurology, 529(10): 2558−2575. doi: 10.1002/cne.25109
    Mantilla GPW, Chester SGB, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, et al. 2021. Earliest Palaeocene purgatoriids and the initial radiation of stem primates. Royal Society Open Science, 8(2): 210050. doi: 10.1098/rsos.210050
    Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology, 282(4): 581−594. doi: 10.1002/cne.902820409
    Mustafar F, Harvey MA, Khani A, Arató J, Rainer G. 2018. Divergent solutions to visual problem solving across mammalian species. eNeuro, 5(4): e0167−18.2018. doi: 10.1523/ENEURO.0167-18.2018
    Ni XJ, Qiu ZD. 2012. Tupaiine tree shrews (Scandentia, Mammalia) from the Yuanmou Lufengpithecus locality of Yunnan, China. Swiss Journal of Palaeontology, 131(1): 51−60. doi: 10.1007/s13358-011-0029-0
    Norton TT, Khanal S, Gawne TJ. 2021. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. Experimental Eye Research, 206: 108525. doi: 10.1016/j.exer.2021.108525
    Petry HM, Bickford ME. 2019. The second visual system of the tree shrew. Journal of Comparative Neurology, 527(3): 679−693. doi: 10.1002/cne.24413
    Petry HM, Fox R, Casagrande VA. 1984. Spatial contrast sensitivity of the tree shrew. Vision Research, 24(9): 1037−1042. doi: 10.1016/0042-6989(84)90080-4
    Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, et al. 2019. Noninvasive imaging of the tree shrew eye: wavefront analysis and retinal imaging with correlative histology. Experimental Eye Research, 185: 107683. doi: 10.1016/j.exer.2019.05.023
    Sedigh-Sarvestani M, Lee KS, Satterfield R, Shultz N, Fitzpatrick D. 2021. A sinusoidal transform of the visual field in cortical area V2. bioRxiv, doi: https://doi.org/10.1101/2020.12.08.416651.
    Sherman SM, Norton TT, Casagrande VA. 1975. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Research, 93(1): 152−157. doi: 10.1016/0006-8993(75)90294-2
    Simpson GG. 1945. The principles of classification and a classification of Mammals. Bulletin of the American Museum of Natural History, 85(16): 1−350.
    Smith GB, Fitzpatrick D. 2016. Viral injection and cranial window implantation for in vivo two-photon imaging. In: Schwartzbach SD, Skalli O, Schikorski T. High-Resolution Imaging of Cellular Proteins. New York, NY: Springer New York, 171–185.
    Snyder M, Diamond IT. 1968. The organization and function of the visual cortex in the tree shrew. Brain, Behavior and Evolution, 1(3): 244−288. doi: 10.1159/000125507
    Van Valen L. 1965. Treeshrews, primates, and fossils. Evolution, 19(2): 137−151. doi: 10.1111/j.1558-5646.1965.tb01701.x
    Wilson DE, Mittermeier RA. 2009. Handbook of the Mammals of the World. Barcelona: Lynx Edicions.
    Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Journal of Genetics and Genomics, 39(3): 131−137. doi: 10.1016/j.jgg.2012.02.003
    Yartsev MM. 2017. The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science, 358(6362): 466−469. doi: 10.1126/science.aan8865
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (826) PDF downloads(202) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint