Turn off MathJax
Article Contents
Xiao-Yi Wang, Mao-Jun Zhong, Jian Zhang, Xing-Feng Si, Sheng-Nan Yang, Jian-Ping Jiang, Jun-Hua Hu. Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau. Zoological Research, 2022, 43(1): 40-51. doi: 10.24272/j.issn.2095-8137.2021.166
Citation: Xiao-Yi Wang, Mao-Jun Zhong, Jian Zhang, Xing-Feng Si, Sheng-Nan Yang, Jian-Ping Jiang, Jun-Hua Hu. Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau. Zoological Research, 2022, 43(1): 40-51. doi: 10.24272/j.issn.2095-8137.2021.166

Multidimensional amphibian diversity and community structure along a 2 600 m elevational gradient on the eastern margin of the Qinghai-Tibetan Plateau

doi: 10.24272/j.issn.2095-8137.2021.166
Funds:  This study was supported by the National Natural Science Foundation of China (31770568, 32071544), Natural Science Foundation of Shanghai (20ZR1418100) and “Light of West China” Program of the Chinese Academy of Sciences
More Information
  • Corresponding author: E-mail: hujh@cib.ac.cn
  • Received Date: 2021-09-09
  • Accepted Date: 2021-11-17
  • Available Online: 2021-11-17
  • Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity, especially for amphibians. However, the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood. Here, we explored amphibian phylogenetic and functional diversity along a 2 600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China. We also assessed the relative importance of spatial (area) and environmental factors (temperature, precipitation, solar radiation, normalized difference vegetation index, and potential evapotranspiration) in shaping amphibian distribution and community structure. Results showed that the phylogenetic and functional diversities were unimodal with elevation, while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation. Phylogenetic net relatedness, nearest taxon index, and functional net relatedness index all showed a positive to negative trend with elevation, indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion. Overall, our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains, with the dominant role potentially switching with elevation. This study provides insights into the underlying assembly mechanisms of mountain amphibians, integrating multidimensional diversity.
  • loading
  • [1]
    Anderson DR. 2008. Model Based Inference in the Life Sciences: A Primer on Evidence. New York: Springer.
    [2]
    Bancroft BA, Baker NJ, Blaustein AR. 2007. Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters, 10(4): 332−345. doi: 10.1111/j.1461-0248.2007.01022.x
    [3]
    Bartoń K. 2020. MuMIn: multi-model inference. R package version 1.43. 17.
    [4]
    Buckley LB, Jetz W. 2007. Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B:Biological Sciences, 274(1614): 1167−1173. doi: 10.1098/rspb.2006.0436
    [5]
    Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer.
    [6]
    Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7): 693−715. doi: 10.1111/j.1461-0248.2009.01314.x
    [7]
    Chamberlain D, Brambilla M, Caprio E, Pedrini P, Rolando A. 2016. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia, 181(4): 1139−1150. doi: 10.1007/s00442-016-3637-y
    [8]
    Chase JM. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328(5984): 1388−1391. doi: 10.1126/science.1187820
    [9]
    Chen CW, Chen CS, Wang YP. 2019. Ecological correlates of extinction risk in Chinese amphibians. Diversity and Distributions, 25(10): 1586−1598. doi: 10.1111/ddi.12961
    [10]
    Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH. 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography, 37(9): 814−826. doi: 10.1111/ecog.00473
    [11]
    Dehling DM, Fritz SA, Töpfer T, Päckert M, Estler P, Bohning-Gaese K, et al. 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 37(11): 1047−1055.
    [12]
    Ding ZF, Hu HJ, Cadotte MW, Liang JC, Hu YM, Si XF. 2021. Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography, 44(9): 1403−1417. doi: 10.1111/ecog.05660
    [13]
    Drummond AJ, Rambaut A. 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1): 214. doi: 10.1186/1471-2148-7-214
    [14]
    Du YB, Fan LQ, Xu ZH, Wen ZX, Cai TL, Feijo A, et al. 2021. A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes. Proceedings of the Royal Society B:Biological Sciences, 288(1949): 20210343. doi: 10.1098/rspb.2021.0343
    [15]
    Elsen PR, Tingley MW. 2015. Global mountain topography and the fate of montane species under climate change. Nature Climate Change, 5(8): 772−776. doi: 10.1038/nclimate2656
    [16]
    Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1): 1−10. doi: 10.1016/0006-3207(92)91201-3
    [17]
    Fei L, Hu SQ, Ye CY, Huang YZ. 2009a. Fauna Sinica. Amphibia. Vol. 2. Anura. Beijing: Science Press. (in Chinese)
    [18]
    Fei L, Hu SQ, Ye CY, Huang YZ. 2009b. Fauna Sinica. Amphibia. Vol. 3. Anura. Ranidae. Beijing: Science Press. (in Chinese)
    [19]
    Fei L, Ye CY, Hu SQ, Liu CZ. 1976. Amphibian fauna of Sichuan. Materials for Herpetological Research, 3: 1−17. (in Chinese)
    [20]
    Fei L, Ye CY, Hu SQ, Tian WS. 2006. Fauna Sinica. Amphibia. Vol. 1. General Account of Amphibia, Gymnophiona and Urodela. Beijing: Science Press. (in Chinese)
    [21]
    Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 4302−4315. doi: 10.1002/joc.5086
    [22]
    Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24(4): 1042−1051. doi: 10.1111/j.1523-1739.2010.01455.x
    [23]
    Fritz SA, Rahbek C. 2012. Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39(8): 1373−1382. doi: 10.1111/j.1365-2699.2012.02757.x
    [24]
    Gaston KJ. 2000. Global patterns in biodiversity. Nature, 405(6783): 220−227. doi: 10.1038/35012228
    [25]
    Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3–4): 325–338.
    [26]
    Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, et al. 2014. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37(8): 711−719. doi: 10.1111/ecog.00578
    [27]
    Graham CH, Parra JL, Rahbek C, McGuire JA. 2009. Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences of the United States of America, 106(S2): 19673−19678.
    [28]
    Hanz DM, Böhning-Gaese K, Ferger SW, Fritz SA, Neuschulz EL, Quitián M, et al. 2019. Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 46(2): 291−303.
    [29]
    Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12): 3105−3117. doi: 10.1890/03-8006
    [30]
    Hu JH, Huang Y, Jiang JP, Guisan A. 2019. Genetic diversity in frogs linked to past and future climate changes on the roof of the world. Journal of Animal Ecology, 88(6): 953−963. doi: 10.1111/1365-2656.12974
    [31]
    Hu JH, Jiang JP. 2018. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecology, 18(1): 3. doi: 10.1186/s12898-018-0160-5
    [32]
    Hu JH, Xie F, Li C, Jiang JP. 2011. Elevational patterns of species richness, range and body size for spiny frogs. PLoS ONE, 6(5): e19817. doi: 10.1371/journal.pone.0019817
    [33]
    Jarzyna MA, Quintero I, Jetz W. 2021. Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecology Letters, 24(2): 196−207. doi: 10.1111/ele.13631
    [34]
    Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology & Evolution, 2(5): 850−858.
    [35]
    Jiang ZH, Ma KM, Liu HY, Tang ZY. 2018. A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45(10): 2288−2298. doi: 10.1111/jbi.13398
    [36]
    Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4(1): 170122. doi: 10.1038/sdata.2017.122
    [37]
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11): 1463−1464. doi: 10.1093/bioinformatics/btq166
    [38]
    Khatiwada JR, Zhao T, Chen YH, Wang B, Xie F, Cannatella DC, et al. 2019. Amphibian community structure along elevation gradients in eastern Nepal Himalaya. BMC Ecology, 19(1): 19. doi: 10.1186/s12898-019-0234-z
    [39]
    Kluge J, Kessler M. 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 38(2): 394−405. doi: 10.1111/j.1365-2699.2010.02433.x
    [40]
    Körner C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15(12): 513−514.
    [41]
    Kraft NJB, Cornwell WK, Webb CO, Ackerly DD. 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170(2): 271−283. doi: 10.1086/519400
    [42]
    Laiolo P, Pato J, Obeso JR. 2018. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21(7): 1022−1032. doi: 10.1111/ele.12967
    [43]
    Li CL, Zhang Y, Zha DD, Yang S, Huang ZYX, de Boer WF. 2019. Assembly processes of waterbird communities across subsidence wetlands in China: a functional and phylogenetic approach. Diversity and Distributions, 25(7): 1118−1129. doi: 10.1111/ddi.12919
    [44]
    Li ZY, Shi L. 2007. Plants of Mount Emei. Beijing: Beijing Science and Technology Publishing. (in Chinese)
    [45]
    Liu CZ. 1950. Amphibians of Western China. Chicago: Chicago Natural History Museum.
    [46]
    Luo ZH, Wang XY, Yang SF, Cheng XL, Liu Y, Hu JH. 2021. Combining the responses of habitat suitability and connectivity to climate change for an East Asian endemic frog. Frontiers in Zoology, 18(1): 14. doi: 10.1186/s12983-021-00398-w
    [47]
    MacArthur RH. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton, New Jersey: Princeton University Press.
    [48]
    Mammola S, Carmona CP, Guillerme T, Cardoso P. 2021. Concepts and applications in functional diversity. Functional Ecology, 35(9): 1869−1885. doi: 10.1111/1365-2435.13882
    [49]
    Mayfield MM, Levine JM. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9): 1085−1093. doi: 10.1111/j.1461-0248.2010.01509.x
    [50]
    McCain CM. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16(1): 1−13. doi: 10.1111/j.1466-8238.2006.00263.x
    [51]
    McCain CM, Grytnes JA. 2010. Elevational gradients in species richness. In: [Anonymous]. Encyclopedia of Life Sciences (ELS). Chichester: Wiley.
    [52]
    Miller ET, Farine DR, Trisos CH. 2017. Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography, 40(4): 461−477. doi: 10.1111/ecog.02070
    [53]
    Montaño-Centellas FA, Loiselle BA, Tingley MW. 2021. Ecological drivers of avian community assembly along a tropical elevation gradient. Ecography, 44(4): 574−588. doi: 10.1111/ecog.05379
    [54]
    Montaño-Centellas FA, McCain C, Loiselle BA. 2020. Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients. Global Ecology and Biogeography, 29(2): 232−245. doi: 10.1111/geb.13021
    [55]
    Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E. 2013. Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22(7): 878−888. doi: 10.1111/geb.12058
    [56]
    Naniwadekar R, Vasudevan K. 2007. Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India. Journal of Biogeography, 34(5): 842−853.
    [57]
    Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature, 453(7192): 216−219. doi: 10.1038/nature06812
    [58]
    Ochoa-Ochoa LM, Mejía-Domínguez NR, Velasco JA, Marske KA, Rahbek C. 2019. Amphibian functional diversity is related to high annual precipitation and low precipitation seasonality in the New World. Global Ecology and Biogeography, 28(9): 1219−1229. doi: 10.1111/geb.12926
    [59]
    Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature, 401(6756): 877−884. doi: 10.1038/44766
    [60]
    Pavoine S, Bonsall MB. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86(4): 792−812. doi: 10.1111/j.1469-185X.2010.00171.x
    [61]
    Perrigo A, Hoorn C, Antonelli A. 2020. Why mountains matter for biodiversity. Journal of Biogeography, 47(2): 315−325. doi: 10.1111/jbi.13731
    [62]
    Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3): 402−411. doi: 10.1046/j.1461-0248.2002.00339.x
    [63]
    Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, et al. 2016. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7(1): 13736. doi: 10.1038/ncomms13736
    [64]
    R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    [65]
    Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149(5): 875−902. doi: 10.1086/286028
    [66]
    Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, et al. 2019. Humboldt’s enigma: what causes global patterns of mountain biodiversity?. Science, 365(6458): 1108−1113. doi: 10.1126/science.aax0149
    [67]
    Santillán V, Quitián M, Tinoco BA, Zárate E, Schleuning M, Böhning-Gaese K, et al. 2019. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia, 189(4): 863−873. doi: 10.1007/s00442-018-4309-x
    [68]
    Song WY, Li XY, Chen ZZ, Li Q, Onditi KO, He SW, et al. 2020. Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages. Zoological Research, 41(6): 670−683. doi: 10.24272/j.issn.2095-8137.2020.085
    [69]
    Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, et al. 2013. Identification of 100 fundamental ecological questions. Journal of Ecology, 101(1): 58−67. doi: 10.1111/1365-2745.12025
    [70]
    Swenson NG, Enquist BJ. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94(3): 451−459. doi: 10.3732/ajb.94.3.451
    [71]
    Tang CQ. 2006. Forest vegetation as related to climate and soil conditions at varying altitudes on a humid subtropical mountain, Mount Emei, Sichuan, China. Ecological Research, 21(2): 174−180. doi: 10.1007/s11284-005-0106-1
    [72]
    Tilman D. 2001. Functional diversity. In: Levin SA. Encyclopedia of Biodiversity, Vol. 3. San Diego, CA: Academic Press, 109–120.
    [73]
    Tsianou MA, Kallimanis AS. 2020. Geographical patterns and environmental drivers of functional diversity and trait space of amphibians of Europe. Ecological Research, 35(1): 123−138. doi: 10.1111/1440-1703.12069
    [74]
    Verschuyl JP, Hansen AJ, McWethy DB, Sallabanks R, Hutto RL. 2008. Is the effect of forest structure on bird diversity modified by forest productivity. Ecological Applications, 18(5): 1155−1170. doi: 10.1890/07-0839.1
    [75]
    Violle C, Reich PB, Pacala SW, Enquist BJ, Kattge J. 2014. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 111(38): 13690−13696. doi: 10.1073/pnas.1415442111
    [76]
    Wang XY, Huang Y, Zhong MJ, Yang SN, Yang X, Jiang JP, et al. 2019. Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evolutionary Ecology, 33(3): 435−448. doi: 10.1007/s10682-019-09980-5
    [77]
    Wang XY, Yang SN, Guo CP, Tang K, Jiang JP, Hu JH. 2020. Amphibian diversity and conservation along an elevational gradient on Mount Emei, southwestern China. Amphibian & Reptile Conservation, 14(3): 46−56.
    [78]
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33: 475−505. doi: 10.1146/annurev.ecolsys.33.010802.150448
    [79]
    Wells KD. 2007. The Ecology and Behavior of Amphibians. Chicago: University of Chicago Press.
    [80]
    Zhang J, Huang SM, He FL. 2015. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 112(13): 4009−4014. doi: 10.1073/pnas.1420844112
    [81]
    Zhang R, Zhang ZC, Shang KK, Zhao MS, Kong JX, Wang X, et al. 2021. A taxonomic and phylogenetic perspective on plant community assembly along an elevational gradient in subtropical forests. Journal of Plant Ecology, 14(4): 702−716. doi: 10.1093/jpe/rtab026
    [82]
    Zhao BL, Chen RH. 1980. Mount Emei. Chengdu: Sichuan People’s Publishing House. (in Chinese)
    [83]
    Zhao T, Wang B, Shu GC, Li C, Jiang JP. 2018. Amphibian species contribute similarly to taxonomic, but not functional and phylogenetic diversity: inferences from amphibian biodiversity on Emei Mountain. Asian Herpetological Research, 9(2): 110−118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (421) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return