Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Wen-Ting Wan, Zhi-Wei Dong, Yan-Dong Ren, Jie Yang, Xiang-Yu Pan, Jin-Wu He, Zhou Chang, Wei Liu, Gui-Chun Liu, Ruo-Ping Zhao, Ping Hu, Chu-Yang Mao, Jun Li, Wen Wang, Xue-Yan Li. Chromatin accessibility profiling provides insights into larval cuticle color and adult longevity in butterflies. Zoological Research, 2021, 42(5): 614-619. doi: 10.24272/j.issn.2095-8137.2021.117
Citation: Wen-Ting Wan, Zhi-Wei Dong, Yan-Dong Ren, Jie Yang, Xiang-Yu Pan, Jin-Wu He, Zhou Chang, Wei Liu, Gui-Chun Liu, Ruo-Ping Zhao, Ping Hu, Chu-Yang Mao, Jun Li, Wen Wang, Xue-Yan Li. Chromatin accessibility profiling provides insights into larval cuticle color and adult longevity in butterflies. Zoological Research, 2021, 42(5): 614-619. doi: 10.24272/j.issn.2095-8137.2021.117

Chromatin accessibility profiling provides insights into larval cuticle color and adult longevity in butterflies

doi: 10.24272/j.issn.2095-8137.2021.117
Funds:  This work was supported by the National Natural Science Foundation of China (31621062 to W.W., 32070482 to X.Y.L.) and Chinese Academy of Sciences (“Light of West China” to X.Y.L., XDB13000000 to W.W.)
More Information
  • loading
  • [1]
    Augusteyn RC. 2004. α-crystallin: a review of its structure and function. Clinical and Experimental Optometry, 87(6): 356−366. doi: 10.1111/j.1444-0938.2004.tb03095.x
    [2]
    Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, et al. 2009. Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. Journal of Molecular Biology, 392(5): 1242−1252. doi: 10.1016/j.jmb.2009.07.069
    [3]
    Baxter SW, Papa R, Chamberlain N, Humphray SJ, Joron M, Morrison C, et al. 2008. Convergent evolution in the genetic basis of Mullerian mimicry in Heliconius butterflies. Genetics, 180(3): 1567−1577. doi: 10.1534/genetics.107.082982
    [4]
    Beldade P, Brakefield PM. 2002. The genetics and evo-devo of butterfly wing patterns. Nature Reviews Genetics, 3(6): 442−452. doi: 10.1038/nrg818
    [5]
    Boggs CL, Watt WB, Ehrlich PR. 2003. Butterflies: Ecology and Evolution Taking Flight. Chicago: University of Chicago Press.
    [6]
    Britten RJ, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science, 165(3891): 349−357. doi: 10.1126/science.165.3891.349
    [7]
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12): 1213−1218. doi: 10.1038/nmeth.2688
    [8]
    Carroll SB. 2000. Endless forms: the evolution of gene regulation and morphological diversity. Cell, 101(6): 577−580. doi: 10.1016/S0092-8674(00)80868-5
    [9]
    Carroll SB. 2005. Evolution at two levels: on genes and form. PLoS Biology, 3(7): e245. doi: 10.1371/journal.pbio.0030245
    [10]
    Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134(1): 25−36. doi: 10.1016/j.cell.2008.06.030
    [11]
    Carroll SB, Grenier JK, Weatherbee SD. 2005. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. 2nd ed. Malden: Blackwell Publishing.
    [12]
    Clark SH, Platt AP. 1969. Influence of photoperiod on development and larval diapause in the viceroy butterfly, Limenitis Archippus. Journal of Insect Physiology, 15(10): 1951−1957. doi: 10.1016/0022-1910(69)90024-9
    [13]
    Danks H. 1987. Insect Dormancy: An Ecological Perspective. Ottawa: The Biological Survey of Canada.
    [14]
    Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al. 2012. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature, 482(7385): 390−394. doi: 10.1038/nature10808
    [15]
    Elwes HJ. 1886. On butterflies of the genus Pernassius. Proceedings of the Zoological Society of London, 20: 6−53.
    [16]
    Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EFA, et al. 2018. A comprehensive and dated phylogenomic analysis of butterflies. Current Biology, 28(5): 770−778.e5. doi: 10.1016/j.cub.2018.01.061
    [17]
    Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, et al. 2019. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology, 17(1): 108. doi: 10.1186/s12915-019-0726-5
    [18]
    Futahashi R, Fujiwara H. 2006. Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus. Insect Biochemistry and Molecular Biology, 36(1): 63−70. doi: 10.1016/j.ibmb.2005.11.002
    [19]
    Futahashi R, Fujiwara H. 2008. Juvenile hormone regulates butterfly larval pattern switches. Science, 319(5866): 1061. doi: 10.1126/science.1149786
    [20]
    Futahashi R, Shirataki H, Narita T, Mita K, Fujiwara H. 2012. Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus. BMC Biology, 10(1): 46. doi: 10.1186/1741-7007-10-46
    [21]
    Hayes JL. 1982. Diapause and diapause dynamics of Colias alexandra (Lepidoptera: Pieridae). Oecologia, 53(3): 317−322. doi: 10.1007/BF00389007
    [22]
    Hiroyoshi S, Reddy GVP. 2018. Field and laboratory studies on the ecology, reproduction, and adult diapause of the Asian Comma Butterfly, Polygonia c-aureum L. (Lepidoptera: Nymphalidae). Insects, 9(4): 169. doi: 10.3390/insects9040169
    [23]
    Jiggins CD, Naisbit RE, Coe RL, Mallet J. 2001. Reproductive isolation caused by colour pattern mimicry. Nature, 411(6835): 302−305. doi: 10.1038/35077075
    [24]
    Joron M, Mallet JLB. 1998. Diversity in mimicry: paradox or paradigm?. Trends in Ecology & Evolution, 13(11): 461−466.
    [25]
    John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, et al. 2011. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genetics, 43(3): 264−268. doi: 10.1038/ng.759
    [26]
    Kaneko J, Katagiri C. 2004. Epicuticular wax of large and small white butterflies, Pieris brassicae and P. rapae crucivora: qualitative and quantitative comparison between diapause and non-diapause pupae. Naturwissenschaften, 91(7): 320−323.
    [27]
    Kronforst MR, Papa R. 2015. The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics, 200(1): 1−19. doi: 10.1534/genetics.114.172387
    [28]
    Kunte K. 2009. The diversity and evolution of batesian mimicry in Papilio swallowtail butterflies. Evolution, 63(10): 2707−2716. doi: 10.1111/j.1558-5646.2009.00752.x
    [29]
    Lee S, Carson K, Rice-Ficht A, Good T. 2005. Hsp20, a novel α-crystallin, prevents Aβ fibril formation and toxicity. Protein Science, 14(3): 593−601. doi: 10.1110/ps.041020705
    [30]
    Levine M, Tjian R. 2003. Transcription regulation and animal diversity. Nature, 424(6945): 147−151. doi: 10.1038/nature01763
    [31]
    Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, et al. 2019. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proceedings of the National Academy of Sciences of the United States of America, 116(48): 24174−24183. doi: 10.1073/pnas.1907068116
    [32]
    Lewis JJ, Reed RD. 2019. Genome-wide regulatory adaptation shapes population-level genomic landscapes in Heliconius. Molecular Biology and Evolution, 36(1): 159−173. doi: 10.1093/molbev/msy209
    [33]
    Li J, Sutter C, Parker DS, Blauwkamp T, Fang M, Cadigan KM. 2007. CBP/p300 are bimodal regulators of Wnt signaling. The EMBO Journal, 26(9): 2284−2294. doi: 10.1038/sj.emboj.7601667
    [34]
    Li XY, Fan DD, Zhang W, Liu GC, Zhang L, Zhao L, et al. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 6(1): 8212. doi: 10.1038/ncomms9212
    [35]
    Lugena AB, Zhang Y, Menet JS, Merlin C. 2019. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain. PLoS Genetics, 15(7): e1008265. doi: 10.1371/journal.pgen.1008265
    [36]
    Machanick P, Bailey TL. 2011. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics, 27(12): 1696−1697. doi: 10.1093/bioinformatics/btr189
    [37]
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing Reads. EMBnet Journal, 17(1): 10−12. doi: 10.14806/ej.17.1.200
    [38]
    McMillan WO, Monteiro A, Kapan DD. 2002. Development and evolution on the wing. Trends in Ecology & Evolution, 17(3): 125−133.
    [39]
    Monteiro A. 2015. Origin, development, and evolution of butterfly eyespots. Annual Review of Entomology, 60(1): 253−271. doi: 10.1146/annurev-ento-010814-020942
    [40]
    Muscarella C. 2010. Parnassius apollo (Linnaeus, 1758).
    [41]
    Nijhout, H.F. 1991. The Development and Evolution of Butterfly Wing Patterns, Smithsonian Institution Press, Washington.
    [42]
    Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, et al. 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature Genetics, 47(4): 405−409. doi: 10.1038/ng.3241
    [43]
    Poulton EB. 1890. The colours of animals, their meaning and use, especially considered in the case of insects. By Edward Bagnall Poulton (International Scientific Series, Vol. LXVII.). New York, Appleton. Science, XVI(407): 286.
    [44]
    Protas ME, Patel NH. 2008. Evolution of coloration patterns. Annual Review of Cell and Developmental Biology, 24(1): 425−446. doi: 10.1146/annurev.cellbio.24.110707.175302
    [45]
    Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, et al. 2011. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 333(6046): 1137−1141. doi: 10.1126/science.1208227
    [46]
    Reed RD, Serfas MS. 2004. Butterfly wing pattern evolution is associated with changes in a Notch/Distal-less temporal pattern formation process. Current Biology, 14(13): 1159−1166. doi: 10.1016/j.cub.2004.06.046
    [47]
    Saunders DS, Steel CGH, Vafopoulou X, Lewis RD. 2002. Insect Clocks. 3rd ed. Amsterdam: Elsevier, 1–551.
    [48]
    Scott JA. 1979. Hibernal diapause of North American Papilionoidea and Hesperioidea. Journal of Research on the Lepidoptera, 18(3): 171−200.
    [49]
    Seddigh S. 2019. Proteomics analysis of two heat shock proteins in insects. Journal of Biomolecular Structure and Dynamics, 37(10): 2652−2668. doi: 10.1080/07391102.2018.1494632
    [50]
    Shilova VY, Zatsepina OG, Garbuz DG, Funikov SY, Zelentsova ES, Schostak NG, et al. 2018. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Insect Molecular Biology, 27(1): 61−72. doi: 10.1111/imb.12339
    [51]
    Shirataki H, Futahashi R, Fujiwara H. 2010. Species-specific coordinated gene expression and trans-regulation of larval color pattern in three swallowtail butterflies. Evolution & Development, 12(3): 305−314.
    [52]
    Tsompana M, Buck MJ. 2014. Chromatin accessibility: a window into the genome. Epigenetics & Chromatin, 7(1): 33.
    [53]
    Van Belleghem SM, Roman PAA, Gutierrez HC, Counterman BA, Papa R. 2020. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proceedings of the Royal Society B: Biological Sciences, 287(1931): 20201267. doi: 10.1098/rspb.2020.1267
    [54]
    Van Der Burg KRL, Lewis JJ, Martin A, Nijhout HF, Danko CG, Reed RD. 2019. Contrasting roles of transcription factors spineless and EcR in the highly dynamic chromatin landscape of butterfly wing metamorphosis. Cell Reports, 27(4): 1027−1038.e3. doi: 10.1016/j.celrep.2019.03.092
    [55]
    Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OCM, et al. 2016. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell, 15(2): 217−226. doi: 10.1111/acel.12422
    [56]
    Wallace AR. 1865. I. On the phenomena of variation and geographical distribution as illustrated by the Papilionidae of the Malayan Region. Transactions of the Linnean Society of London, 25(1): 1−71. doi: 10.1111/j.1096-3642.1865.tb00178.x
    [57]
    Wallace AR. 1871. Contributions to the Theory of Natural Selection: a Series of Essays. Cambridge: Cambridge University Press.
    [58]
    Weiss JC. 1999. The Parnassius of the world, Part 3. Hillside Books, Canterberry.
    [59]
    Yamanaka A, Imai H, Adachi M, Komatsu M, Islam ATMF, Kodama I, et al. 2004. Hormonal control of the orange coloration of diapause pupae in the swallowtail butterfly, Papilio xuthus L. (Lepidoptera: Papilionidae). Zoological Science, 21(10): 1049−1055. doi: 10.2108/zsj.21.1049
    [60]
    Yang J, Wan WT, Xie M, Mao JL, Dong ZW, Lu SH, et al. 2020. Chromosome-level reference genome assembly and gene editing of the dead-leaf butterfly Kallima inachus. Molecular Ecology Resources, 20(4): 1080−1092. doi: 10.1111/1755-0998.13185
    [61]
    Zhang LL, Mazo-Vargas A, Reed RD. 2017. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proceedings of the National Academy of Sciences of the United States of America, 114(40): 10707−10712. doi: 10.1073/pnas.1709058114
    [62]
    Zhou CL, Shi JY, Yi CH, Chen XM. 2005. Research on biology of Kallima inachus. Sichuan Journal of Zoology, 24(4): 445−450. (in Chinese)
  • ZR-2021-117 Supplementary Material.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (777) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return