Volume 42 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Lin Zeng, He-Qun Liu, Xiao-Long Tu, Chang-Mian Ji, Xiao Gou, Ali Esmailizadeh, Sheng Wang, Ming-Shan Wang, Ming-Cheng Wang, Xiao-Long Li, Hadi Charati, Adeniyi C. Adeola, Rahamon Akinyele Moshood Adedokun, Olatunbosun Oladipo, Sunday Charles Olaogun, Oscar J. Sanke, Mangbon Godwin F., Sheila Cecily Ommeh, Bernard Agwanda, Jacqueline Kasiiti Lichoti, Jian-Lin Han, Hong-Kun Zheng, Chang-Fa Wang, Ya-Ping Zhang, Laurent A. F. Frantz, Dong-Dong Wu. Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zoological Research, 2021, 42(4): 450-460. doi: 10.24272/j.issn.2095-8137.2021.095
Citation: Lin Zeng, He-Qun Liu, Xiao-Long Tu, Chang-Mian Ji, Xiao Gou, Ali Esmailizadeh, Sheng Wang, Ming-Shan Wang, Ming-Cheng Wang, Xiao-Long Li, Hadi Charati, Adeniyi C. Adeola, Rahamon Akinyele Moshood Adedokun, Olatunbosun Oladipo, Sunday Charles Olaogun, Oscar J. Sanke, Mangbon Godwin F., Sheila Cecily Ommeh, Bernard Agwanda, Jacqueline Kasiiti Lichoti, Jian-Lin Han, Hong-Kun Zheng, Chang-Fa Wang, Ya-Ping Zhang, Laurent A. F. Frantz, Dong-Dong Wu. Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zoological Research, 2021, 42(4): 450-460. doi: 10.24272/j.issn.2095-8137.2021.095

Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation

doi: 10.24272/j.issn.2095-8137.2021.095
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (31621062), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA2004010302), and Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK05010703). D.D.W. was supported by the National Natural Science Foundation of China (91731304, 31822048), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13020600), Qinghai Department of Science and Technology Major Project, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University (2018KF001). Sampling of this work was also supported by the Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (Large Research Infrastructure Funding)
More Information
  • Over the last several hundred years, donkeys have adapted to high-altitude conditions on the Tibetan Plateau. Interestingly, the kiang, a closely related equid species, also inhabits this region. Previous reports have demonstrated the importance of specific genes and adaptive introgression in divergent lineages for adaptation to hypoxic conditions on the Tibetan Plateau. Here, we assessed whether donkeys and kiangs adapted to the Tibetan Plateau via the same or different biological pathways and whether adaptive introgression has occurred. We assembled a de novo genome from a kiang individual and analyzed the genomes of five kiangs and 93 donkeys (including 24 from the Tibetan Plateau). Our analyses suggested the existence of a strong hard selective sweep at the EPAS1 locus in kiangs. In Tibetan donkeys, however, another gene, i.e., EGLN1, was likely involved in their adaptation to high altitude. In addition, admixture analysis found no evidence for interspecific gene flow between kiangs and Tibetan donkeys. Our findings indicate that despite the short evolutionary time scale since the arrival of donkeys on the Tibetan Plateau, as well as the existence of a closely related species already adapted to hypoxia, Tibetan donkeys did not acquire adaptation via admixture but instead evolved adaptations via a different biological pathway.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. 2002. Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12): 1805−1814. doi: 10.1101/gr.631202
    [2]
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    [3]
    Beall CM, Cavalleri GL, Deng LB, Elston RC, Gao Y, Knight J, et al. 2010. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11459−11464. doi: 10.1073/pnas.1002443107
    [4]
    Beja-Pereira A, England PR, Ferrand N, Jordan S, Bakhiet AO, Abdalla MA, et al. 2004. African origins of the domestic donkey. Science, 304(5678): 1781. doi: 10.1126/science.1096008
    [5]
    Bigham A, Bauchet M, Pinto D, Mao XY, Akey JM, Mei R, et al. 2010. Identifying signatures of natural selection in tibetan and andean populations using dense genome scan data. PLoS Genetics, 6(9): e1001116. doi: 10.1371/journal.pgen.1001116
    [6]
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [7]
    Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
    [8]
    Enard D, Messer PW, Petrov DA. 2014. Genome-wide signals of positive selection in human evolution. Genome Research, 24(6): 885−895. doi: 10.1101/gr.164822.113
    [9]
    Ewing G, Hermisson J. 2010. MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics, 26(16): 2064−2065. doi: 10.1093/bioinformatics/btq322
    [10]
    Flower SS. 1929. List of the vertebrated animals exhibited in the Gardens of the Zoological Society of London, 1828–1927 centenary edition in 3 volumesVol 1: mammals. Nature, 124(3135): 836.
    [11]
    Foll M, Gaggiotti OE, Daub JT, Vatsiou A, Excoffier L. 2014. Widespread signals of convergent adaptation to high altitude in Asia and America. The American Journal of Human Genetics, 95(4): 394−407. doi: 10.1016/j.ajhg.2014.09.002
    [12]
    Ge RL, Cai QL, Shen YY, San A, Ma L, Zhang Y, et al. 2013. Draft genome sequence of the Tibetan antelope. Nature Communications, 4: 1858. doi: 10.1038/ncomms2860
    [13]
    Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences of the United States of America, 108(4): 1513−1518. doi: 10.1073/pnas.1017351108
    [14]
    Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan DW, et al. 2014. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Research, 24(8): 1308−1315. doi: 10.1101/gr.171876.113
    [15]
    Gray AP. 1972. Mammalian Hybrids. 2nd ed. Farnham Royal, Slough, United Kingdom: Commonwealth Agricultural Bureaux.
    [16]
    Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics, 5(10): e1000695. doi: 10.1371/journal.pgen.1000695
    [17]
    Hay WE. 1859. Notes on the kiang of Thibet (E. kiang). Proceedings of the Zoological Society of London, 27: 353−357.
    [18]
    Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, et al. 2011. Classic selective sweeps were rare in recent human evolution. Science, 331(6019): 920−924. doi: 10.1126/science.1198878
    [19]
    Huerta-Sánchez E, Jin X, As an, Bianba Z, Peter BM, Vinckenbosch N, et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512(7513): 194−197. doi: 10.1038/nature13408
    [20]
    Jónsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L, Fumagalli M, et al. 2014. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 111(52): 18655−18660. doi: 10.1073/pnas.1412627111
    [21]
    Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14): 3059−3066. doi: 10.1093/nar/gkf436
    [22]
    Kent WJ. 2002. BLAT—the BLAST-like alignment tool. Genome Research, 12(4): 656−664. doi: 10.1101/gr.229202
    [23]
    Kinloch AAA. 1869. Large Game Shooting in Thibet and the North West. Oxford: Harrison.
    [24]
    Kong Y. 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics, 98(2): 152−153. doi: 10.1016/j.ygeno.2011.05.009
    [25]
    Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, et al. 2008. Patterns of positive selection in six mammalian genomes. PLoS Genetics, 4(8): e1000144. doi: 10.1371/journal.pgen.1000144
    [26]
    Li H, Coghlan A, Ruan J, Coin LJ, Hériché JK, Osmotherly L, et al. 2006. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Research, 34(suppl_1): D572−D580.
    [27]
    Li Y, Vonholdt BM, Reynolds A, Boyko AR, Wayne RK, Wu DD, et al. 2013. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution, 30(8): 1867−1876. doi: 10.1093/molbev/mst088
    [28]
    Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. 2005. Essential role of endothelial Notch1 in angiogenesis. Circulation, 111(14): 1826−1832. doi: 10.1161/01.CIR.0000160870.93058.DD
    [29]
    Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, et al. 2014. A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 46(9): 951−956. doi: 10.1038/ng.3067
    [30]
    Löytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science, 320(5883): 1632−1635. doi: 10.1126/science.1158395
    [31]
    Ma XY, Ning T, Adeola AC, Li J, Esmailizadeh A, Lichoti JK, et al. 2020. Potential dual expansion of domesticated donkeys revealed by worldwide analysis on mitochondrial sequences. Zoological Research, 41(1): 51−60. doi: 10.24272/j.issn.2095-8137.2020.007
    [32]
    Martin SH, Davey JW, Jiggins CD. 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Molecular Biology and Evolution, 32(1): 244−257. doi: 10.1093/molbev/msu269
    [33]
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [34]
    McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. 2004. The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670): 581−584. doi: 10.1126/science.1092500
    [35]
    Miao BP, Wang Z, Li YX. 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan Mastiff by introgression of the gray wolf from the Tibetan Plateau. Molecular Biology and Evolution, 34(3): 734−743.
    [36]
    Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499(7456): 74−78. doi: 10.1038/nature12323
    [37]
    Patterson N, Moorjani P, Luo YT, Mallick S, Rohland N, Zhan YP, et al. 2012. Ancient admixture in human history. Genetics, 192(3): 1065−1093. doi: 10.1534/genetics.112.145037
    [38]
    Pavlidis P, Živković D, Stamatakis A, Alachiotis N. 2013. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Molecular Biology and Evolution, 30(9): 2224−2234. doi: 10.1093/molbev/mst112
    [39]
    Peng Y, Yang ZH, Zhang H, Cui CY, Qi XB, Luo XJ, et al. 2011. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Molecular Biology and Evolution, 28(2): 1075−1081. doi: 10.1093/molbev/msq290
    [40]
    Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. 2014. PopGenome: an efficient swiss army knife for population genomic analyses in R. Molecular Biology and Evolution, 31(7): 1929−1936. doi: 10.1093/molbev/msu136
    [41]
    Puri MC, Partanen J, Rossant J, Bernstein A. 1999. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development, 126(20): 4569−4580. doi: 10.1242/dev.126.20.4569
    [42]
    Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, et al. 2012. The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8): 946−949. doi: 10.1038/ng.2343
    [43]
    Qu YH, Zhao HW, Han NJ, Zhou GY, Song G, Gao B, et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nature Communications, 4: 2071. doi: 10.1038/ncomms3071
    [44]
    Shriver MD, Kennedy GC, Parra EJ, Lawson HA, Sonpar V, Huang J, et al. 2004. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Human Genomics, 1(4): 274. doi: 10.1186/1479-7364-1-4-274
    [45]
    Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3210−3212. doi: 10.1093/bioinformatics/btv351
    [46]
    Simonson TS, Yang YZ, Huff CD, Yun HX, Qin G, Witherspoon DJ, et al. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science, 329(5987): 72−75. doi: 10.1126/science.1189406
    [47]
    Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. 2006. BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 34(suppl 1): D535−D539.
    [48]
    Venkat A, Hahn MW, Thornton JW. 2018. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nature Ecology & Evolution, 2(8): 1280−1288.
    [49]
    vonHoldt B, Fan ZX, Ortega-Del Vecchyo D, Wayne RK. 2017. EPAS1 variants in high altitude Tibetan wolves were selectively introgressed into highland dogs. PeerJ, 5: e3522. doi: 10.7717/peerj.3522
    [50]
    Wang C, Li H, Guo Y, Huang J, Sun Y, Min J, Wang J, Fang X, Zhao Z, Wang S, et al. 2020. Donkey genomes provide new insights into domestication and selection for coat color. Nature Communications, 11(1): 6014. doi: 10.1038/s41467-020-19813-7
    [51]
    Wang GD, Fan RX, Zhai WW, Liu F, Wang L, Zhong L, et al. 2014. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan Plateau. Genome Biology and Evolution, 6(8): 2122−2128. doi: 10.1093/gbe/evu162
    [52]
    Wang K, Li MY, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16): e164. doi: 10.1093/nar/gkq603
    [53]
    Wang MS, Yang HC, Otecko NO, Wu DD, Zhang YP. 2016. Olfactory genes in Tibetan wild boar. Nature Genetics, 48(9): 972−973. doi: 10.1038/ng.3631
    [54]
    Wu CL, Jin XF, Tsueng G, Afrasiabi C, Su AI. 2016. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Research, 44(D1): D313−D316. doi: 10.1093/nar/gkv1104
    [55]
    Wu DD, Ding XD, Wang S, Wójcik JM, Zhang Y, Tokarska M, et al. 2018. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nature Ecology & Evolution, 2(7): 1139−1145.
    [56]
    Xiang K, Ouzhuluobu, Peng Y, Yang ZH, Zhang XM, Cui CY, et al. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Molecular Biology and Evolution, 30(8): 1889−1898. doi: 10.1093/molbev/mst090
    [57]
    Xu SH, Li SL, Yang YJ, Tan JZ, Lou HY, Jin WF, et al. 2011. A genome-wide search for signals of high-altitude Adaptation in Tibetans. Molecular Biology and Evolution, 28(2): 1003−1011. doi: 10.1093/molbev/msq277
    [58]
    Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    [59]
    Zhang B, Day DS, Ho JW, Song LY, Cao JJ, Christodoulou D, et al. 2013. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. Genome Research, 23(6): 917−927. doi: 10.1101/gr.149674.112
    [60]
    Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12): 2472−2479. doi: 10.1093/molbev/msi237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1287) PDF downloads(239) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return