Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Zu-Bing Cao, Di Gao, Hui-Qun Yin, Hui Li, Teng-Teng Xu, Meng-Ya Zhang, Xin Wang, Qiu-Chen Liu, Ye-Lian Yan, Yang-Yang Ma, Tong Yu, Yun-Sheng Li, Yun-Hai Zhang. Chromatin remodeler INO80 mediates trophectoderm permeability barrier to modulate morula-to-blastocyst transition. Zoological Research, 2021, 42(5): 562-573. doi: 10.24272/j.issn.2095-8137.2021.075
Citation: Zu-Bing Cao, Di Gao, Hui-Qun Yin, Hui Li, Teng-Teng Xu, Meng-Ya Zhang, Xin Wang, Qiu-Chen Liu, Ye-Lian Yan, Yang-Yang Ma, Tong Yu, Yun-Sheng Li, Yun-Hai Zhang. Chromatin remodeler INO80 mediates trophectoderm permeability barrier to modulate morula-to-blastocyst transition. Zoological Research, 2021, 42(5): 562-573. doi: 10.24272/j.issn.2095-8137.2021.075

Chromatin remodeler INO80 mediates trophectoderm permeability barrier to modulate morula-to-blastocyst transition

doi: 10.24272/j.issn.2095-8137.2021.075
#Authors contributed equally to this work
Funds:  This work was supported by the Anhui Provincial Natural Science Foundation (1908085MC97, 2008085MC85), National Natural Science Foundation of China (31802059, 31902226), Hefei Innovation and Entrepreneurship Support Plan for Returnee Scholar (03082009), and Anhui Provincial Innovation and Entrepreneurship Support Plan for Returnee Scholar (2020LCX015)
More Information
  • Corresponding author: E-mail: yunhaizhang@ahau.edu.cn
  • Received Date: 2021-06-15
  • Accepted Date: 2021-07-30
  • Available Online: 2021-08-02
  • Publish Date: 2021-09-18
  • Inositol requiring mutant 80 (INO80) is a chromatin remodeler that regulates pluripotency maintenance of embryonic stem cells and reprogramming of somatic cells into pluripotent stem cells. However, the roles and mechanisms of INO80 in porcine pre-implantation embryonic development remain largely unknown. Here, we show that INO80 modulates trophectoderm epithelium permeability to promote porcine blastocyst development. The INO80 protein is highly expressed in the nuclei during morula-to-blastocyst transition. Functional studies revealed that RNA interference (RNAi)-mediated knockdown of INO80 severely blocks blastocyst formation and disrupts lineage allocation between the inner cell mass and trophectoderm. Mechanistically, single-embryo RNA sequencing revealed that INO80 regulates multiple genes, which are important for lineage specification, tight junction assembly, and fluid accumulation. Consistent with the altered expression of key genes required for tight junction assembly, a permeability assay showed that paracellular sealing is defective in the trophectoderm epithelium of INO80 knockdown blastocysts. Importantly, aggregation of 8-cell embryos from the control and INO80 knockdown groups restores blastocyst development and lineage allocation via direct complementation of the defective trophectoderm epithelium. Taken together, these results demonstrate that INO80 promotes blastocyst development by regulating the expression of key genes required for lineage specification, tight junction assembly, and fluid accumulation.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Alarcon VB. 2010. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biology of Reproduction, 83(3): 347−358. doi: 10.1095/biolreprod.110.084400
    Alberio R. 2020. Regulation of cell fate decisions in early mammalian embryos. Annual Review of Animal Biosciences, 8: 377−393. doi: 10.1146/annurev-animal-021419-083841
    Barcroft LC, Offenberg H, Thomsen P, Watson AJ. 2003. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Developmental Biology, 256(2): 342−354. doi: 10.1016/S0012-1606(02)00127-6
    Bou G, Liu SC, Guo J, Zhao YM, Sun MJ, Xue BH., et al. 2016. Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos. Developmental Biology, 410(1): 36−44. doi: 10.1016/j.ydbio.2015.12.014
    Bou G, Liu SC, Sun MJ, Zhu J, Xue BH, Guo JJ, et al. 2017. CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development, 144(7): 1296−1306.
    Cabot B, Cabot RA. 2018. Chromatin remodeling in mammalian embryos. Reproduction, 155(3): R147−R158. doi: 10.1530/REP-17-0488
    Cao ZB, Xu TT, Tong X, Wang YQ, Zhang DD, Gao D, et al. 2019. Maternal Yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cells, 8(12): 1606. doi: 10.3390/cells8121606
    Chazaud C, Yamanaka Y. 2016. Lineage specification in the mouse preimplantation embryo. Development, 143(7): 1063−1074. doi: 10.1242/dev.128314
    Choi I, Carey TS, Wilson CA, Knott JG. 2012. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development, 139(24): 4623−4632. doi: 10.1242/dev.086645
    Cockburn K, Rossant J. 2010. Making the blastocyst: lessons from the mouse. The Journal of Clinical Investigation, 120(4): 995−1003. doi: 10.1172/JCI41229
    Daigneault BW, Rajput S, Smith GW, Ross PJ. 2018. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Scientific Reports, 8(1): 7753. doi: 10.1038/s41598-018-25964-x
    Eckert JJ, McCallum A, Mears A, Rumsby MG, Cameron IT, Fleming TP. 2004. Specific PKC isoforms regulate blastocoel formation during mouse preimplantation development. Developmental Biology, 274(2): 384−401. doi: 10.1016/j.ydbio.2004.07.027
    Emura N, Takahashi K, Saito Y, Sawai K. 2019. The necessity of TEAD4 for early development and gene expression involved in differentiation in porcine embryos. Journal of Reproduction and Development, 65(4): 361−368. doi: 10.1262/jrd.2018-120
    Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. 2017. Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674): 67−73. doi: 10.1038/nature24033
    Goissis MD, Cibelli JB. 2014. Functional characterization of SOX2 in bovine preimplantation embryos. Biology of Reproduction, 90(2): 30.
    Hota SK, Bruneau BG. 2016. ATP-dependent chromatin remodeling during mammalian development. Development, 143(16): 2882−2897. doi: 10.1242/dev.128892
    Kalive M, Faust JJ, Koeneman BA, Capco DG. 2010. Involvement of the PKC family in regulation of early development. Molecular Reproduction and Development, 77(2): 95−104.
    Kan NG, Stemmler MP, Junghans D, Kanzler B, de Vries WN, Dominis M, et al. 2007. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development, 134(1): 31−41. doi: 10.1242/dev.02722
    Kim J, Gye MC, Kim MK. 2004. Role of occludin, a tight junction protein, in blastocoel formation, and in the paracellular permeability and differentiation of trophectoderm in preimplantation mouse embryos. Molecules and Cells, 17(2): 248−254.
    Kwon J, Jeong SM, Choi I, Kim NH. 2016. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS One, 11(4): e0152921. doi: 10.1371/journal.pone.0152921
    Lee HS, Lee SA, Hur SK, Seo JW, Kwon J. 2014. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nature Communications, 5(1): 5128. doi: 10.1038/ncomms6128
    Marikawa Y, Alarcon VB. 2012. Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In: Kubiak JZ. Mouse Development: From Oocyte to Stem Cells. Berlin, Heidelberg: Springer, 165–184.
    Mordhorst BR, Prather RS. 2017. Pig models of reproduction. In: Constantinescu G, Schatten H. Animal Models and Human Reproduction. Hoboken: John Wiley & Sons, 213–234.
    Morrison AJ. 2017. Genome maintenance functions of the INO80 chromatin remodeller. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1731): 20160289. doi: 10.1098/rstb.2016.0289
    Negrón-Pérez VM, Hansen PJ. 2018. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biology of Reproduction, 98(2): 170−183. doi: 10.1093/biolre/iox172
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3): 379−391. doi: 10.1016/S0092-8674(00)81769-9
    Paul S, Knott JG. 2014. Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Molecular Reproduction and Development, 81(2): 171−182. doi: 10.1002/mrd.22219
    Poli J, Gasser SM, Papamichos-Chronakis M. 2017. The INO80 remodeller in transcription, replication and repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1731): 20160290. doi: 10.1098/rstb.2016.0290
    Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. 2013. Genetically engineered pig models for human diseases. Annual Review of Animal Biosciences, 1: 203−219. doi: 10.1146/annurev-animal-031412-103715
    Qiu ZJ, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW. 2016. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biology, 14(1): 18. doi: 10.1186/s12915-016-0238-5
    Serber DW, Runge JS, Menon DU, Magnuson T. 2016. The mouse INO80 chromatin-remodeling complex is an essential meiotic factor for spermatogenesis. Biology of Reproduction, 94(1): 8.
    Shan CM, Bao KH, Diedrich J, Chen X, Lu C, Yates III JR, et al. 2020. The INO80 complex regulates epigenetic inheritance of heterochromatin. Cell Reports, 33(13): 108561. doi: 10.1016/j.celrep.2020.108561
    Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development, 132(9): 2093−2102. doi: 10.1242/dev.01801
    Wang HH, Ding TB, Brown N, Yamamoto Y, Prince LS, Reese J, et al. 2008. Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse. Developmental Biology, 318(1): 112−125. doi: 10.1016/j.ydbio.2008.03.008
    Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng XF, et al. 2014. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell, 14(5): 575−591. doi: 10.1016/j.stem.2014.02.013
    White MD, Plachta N. 2020. Specification of the first mammalian cell lineages in vivo and in vitro. Cold Spring Harbor Perspectives in Biology, 12(4): a035634. doi: 10.1101/cshperspect.a035634
    Xiong Y, Tan YJ, Xiong YM, Huang YT, Hu XL, Lu YC, et al. 2013. Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cellular Physiology and Biochemistry, 31(4–5)): 649−658.
    Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, et al. 2007. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development, 134(21): 3827−3836. doi: 10.1242/dev.010223
    Yang QE, Ozawa M, Zhang K, Johnson SE, Ealy AD. 2016. The requirement for protein kinase C delta (PRKCD) during preimplantation bovine embryo development. Reproduction, Fertility and Development, 28(4): 482−490. doi: 10.1071/RD14160
    Zeng FY, Baldwin DA, Schultz RM. 2004. Transcript profiling during preimplantation mouse development. Developmental Biology, 272(2): 483−496. doi: 10.1016/j.ydbio.2004.05.018
  • ZR-2021-075 Supplementary Materials.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (851) PDF downloads(121) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint