Citation: | Xu-Peng Bi, Guo-Jie Zhang. Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 2021, 42(2): 135-137. doi: 10.24272/j.issn.2095-8137.2021.066 |
[1] |
Arratia G. 1999. The monophyly of Teleostei and stem-group teleosts. In: Arratia G, Schultze HP. Mesozoic Fishes. Munich: Verlag Dr. Friedrich Pfeil, 265–334.
|
[2] |
Bi XP, Wang K, Yang LD, Pan HL, Jiang HF, Wei QW, et al. 2021. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell, 184(5): 1377−1391.e14. doi: 10.1016/j.cell.2021.01.046
|
[3] |
Coates MI. 1996. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(3): 363−421. doi: 10.1017/S0263593300006787
|
[4] |
Cupello C, Meunier FJ, Herbin M, Janvier P, Clément G, Brito PM. 2017. The homology and function of the lung plates in extant and fossil coelacanths. Scientific Reports, 7: 9244. doi: 10.1038/s41598-017-09327-6
|
[5] |
Daeschler EB, Shubin NH, Jenkins FA Jr. 2006. A devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440(7085): 757−763. doi: 10.1038/nature04639
|
[6] |
Gao Y, Lan Y, Liu H, Jiang RL. 2011. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Developmental Biology, 352(1): 83−91. doi: 10.1016/j.ydbio.2011.01.018
|
[7] |
Hawkins MB, Henke K, Harris MP. 2021. Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell, 184(4): 899−911.e13. doi: 10.1016/j.cell.2021.01.003
|
[8] |
Icardo JM. 2006. Conus arteriosus of the teleost heart: dismissed, but not missed. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A(8): 900−908. doi: 10.1002/ar.a.20361
|
[9] |
Icardo JM, Colvee E, Cerra MC, Tota B. 2002. Structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart. I: the conus valves and the subendocardium. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 267(1): 17−27. doi: 10.1002/ar.10080
|
[10] |
Ishimatsu A. 2012. Evolution of the cardiorespiratory system in air-breathing fishes. Aqua-BioScience Monographs, 5(1): 1−28. doi: 10.5047/absm.2012.00501.0001
|
[11] |
Izumi H, Kurai J, Kodani M, Watanabe M, Yamamoto A, Nanba E, et al. 2017. A novel SLC34A2 mutation in a patient with pulmonary alveolar microlithiasis. Human Genome Variation, 4: 16047. doi: 10.1038/hgv.2016.47
|
[12] |
Johanson Z, Ahlberg PE. 2001. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 92(1): 43−74. doi: 10.1017/S0263593300000043
|
[13] |
Liem KF. 1988. Form and function of lungs: the evolution of air breathing mechanisms. American Zoologist, 28(2): 739−759. doi: 10.1093/icb/28.2.739
|
[14] |
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. 2018. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biological Reviews, 93(3): 1604−1619. doi: 10.1111/brv.12411
|
[15] |
Sato Y, Nishida M. 2010. Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environmental Biology of Fishes, 88(2): 169−188. doi: 10.1007/s10641-010-9628-7
|
[16] |
Shubin NH, Daeschler EB, Jenkins FA Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature, 440(7085): 764−771. doi: 10.1038/nature04637
|
[17] |
Tissier J, Rage JC, Laurin M. 2017. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander. PeerJ, 5: e3861. doi: 10.7717/peerj.3861
|
[18] |
Wang K, Wang J, Zhu CL, Yang LD, Ren YD, Ruan J, et al. 2021. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell, 184(5): 1362−1376.e18. doi: 10.1016/j.cell.2021.01.047
|
[19] |
Zákány J, Duboule D. 1999. Hox genes in digit development and evolution. Cell and Tissue Research, 296: 19−25. doi: 10.1007/s004410051262
|
[20] |
Zhu M, Yu XB. 2009. Stem sarcopterygians have primitive polybasal fin articulation. Biology Letters, 5(3): 372−375. doi: 10.1098/rsbl.2008.0784
|