Volume 42 Issue 3
May  2021
Turn off MathJax
Article Contents
Xiao-Long Wu, Zhen-Shuo Zhu, Xia Xiao, Zhe Zhou, Shuai Yu, Qiao-Yan Shen, Ju-Qing Zhang, Wei Yue, Rui Zhang, Xin He, Sha Peng, Shi-Qiang Zhang, Na Li, Ming-Zhi Liao, Jin-Lian Hua. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zoological Research, 2021, 42(3): 377-388. doi: 10.24272/j.issn.2095-8137.2020.375
Citation: Xiao-Long Wu, Zhen-Shuo Zhu, Xia Xiao, Zhe Zhou, Shuai Yu, Qiao-Yan Shen, Ju-Qing Zhang, Wei Yue, Rui Zhang, Xin He, Sha Peng, Shi-Qiang Zhang, Na Li, Ming-Zhi Liao, Jin-Lian Hua. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zoological Research, 2021, 42(3): 377-388. doi: 10.24272/j.issn.2095-8137.2020.375

LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells

doi: 10.24272/j.issn.2095-8137.2020.375
#Authors contributed equally to this work
Funds:  This work was supported by the National Key Research, Development Program of China-Stem Cell and Translational Research (2016YFA0100200), National Natural Science Foundation of China (32072806, 31572399, 61772431, 62072377), Program of Shaanxi Province Science and Technology Innovation Team (2019TD-036), Fundamental Research Funds for the Central Universities, Northwest A & F University (Z1090219146, Z102022004)
More Information
  • LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group (shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Balzer E, Heine C, Jiang Q, Lee VM, Moss EG. 2010. LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development, 137(6): 891−900. doi: 10.1242/dev.042895
    Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al. 2012. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6): 1209−1222. doi: 10.1016/j.cell.2012.08.023
    Burdon T, Stracey C, Chambers I, Nichols J, Smith A. 1999. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Developmental Biology, 210(1): 30−43. doi: 10.1006/dbio.1999.9265
    Caunt CJ, Keyse SM. 2013. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS Journal, 280(2): 489−504. doi: 10.1111/j.1742-4658.2012.08716.x
    Chandrasekaran S, Zhang J, Sun Z, Zhang L, Ross CA, Huang YC, et al. 2017. Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Reports, 21(10): 2965−2977. doi: 10.1016/j.celrep.2017.07.048
    Chen HF, Chuang HC, Tan TH. 2019. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. International Journal of Molecular Sciences, 20(11): 2668. doi: 10.3390/ijms20112668
    Chen HX, Guo RP, Zhang Q, Guo HC, Yang M, Wu ZF, et al. 2015. Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 112(44): E5936−E5943. doi: 10.1073/pnas.1516319112
    Cheng D, Guo YJ, Li ZZ, Liu YJ, Gao X, Gao Y, et al. 2012. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One, 7(12): e51778. doi: 10.1371/journal.pone.0051778
    Chomczynski P, Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols, 1(2): 581−585. doi: 10.1038/nprot.2006.83
    Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan YJ, Soliman MA, et al. 2019. Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell, 25(1): 120−136. doi: 10.1016/j.stem.2019.05.001
    Deathridge J, Antolović V, Parsons M, Chubb JR. 2019. Live imaging of ERK signalling dynamics in differentiating mouse embryonic stem cells. Development, 146(12): dev172940. doi: 10.1242/dev.172940
    Esteban MA, Xu JY, Yang JY, Peng MX, Qin DJ, Li W, et al. 2009. Generation of induced pluripotent stem cell lines from tibetan miniature pig. Journal of Biological Chemistry, 284(26): 17634−17640. doi: 10.1074/jbc.M109.008938
    Ezashi T, Telugu BPVL, Alexenko AP, Sachdev S, Sinha S, Roberts RM. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 106(27): 10993−10998. doi: 10.1073/pnas.0905284106
    Faunes F. 2020. Role and Regulation of Lin28 in Progenitor Cells During Central Nervous System Development. New York: Springer.
    Gao XF, Nowak-Imialek M, Chen X, Chen DS, Herrmann D, Ruan DG, et al. 2019. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 21(6): 687−699. doi: 10.1038/s41556-019-0333-2
    Gao Y, Li H, Han Q, Li Y, Wang TX, Huang CY, et al. 2020. Overexpression of DUSP6 enhances chemotherapy-resistance of ovarian epithelial cancer by regulating the ERK signaling pathway. Journal of Cancer, 11(11): 3151−3164. doi: 10.7150/jca.37267
    Hackett JA, Surani MA. 2014. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell, 15(4): 416−430. doi: 10.1016/j.stem.2014.09.015
    Hafner M, Max KEA, Bandaru P, Morozov P, Gerstberger S, Brown M, et al. 2013. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA, 19(5): 613−626. doi: 10.1261/rna.036491.112
    Haraguchi S, Kikuchi K, Nakai M, Tokunaga T. 2012. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. Journal of Reproduction and Development, 58(6): 707−716. doi: 10.1262/jrd.2012-008
    Hiratsuka T, Bordeu I, Pruessner G, Watt FM. 2020. Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proceedings of the National Academy of Sciences of the United States of America, 117(30): 17796−17807. doi: 10.1073/pnas.2006965117
    Hou DR, Jin Y, Nie XW, Zhang ML, Ta N, Zhao LH, et al. 2016. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Scientific Reports, 6: 25838. doi: 10.1038/srep25838
    Hu X, Wang M, Cao L, Cong L, Gao YJ, Lu JW, et al. 2020. MiR-4319 suppresses the growth of esophageal squamous cell carcinoma via targeting NLRC5. Current Molecular Pharmacology, 13(2): 144−149. doi: 10.2174/1874467212666191119094636
    Kalkan T, Bornelov S, Mulas C, Diamanti E, Lohoff T, Ralser M, et al. 2019. Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naive pluripotency. Cell Stem Cell, 24(5): 785−801. doi: 10.1016/j.stem.2019.03.017
    Kobayashi T, Kozlova A. 2018. Lin28a overexpression reveals the role of Erk signaling in articular cartilage development. Development, 145(15): dev162594. doi: 10.1242/dev.162594
    Kumar RM, Cahan P, Shalek AK, Satija R, Daleykeyser AJ, Li H, et al. 2014. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 516(7529): 56−61. doi: 10.1038/nature13920
    Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, et al. 2008. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Research, 18(5): 600−603. doi: 10.1038/cr.2008.51
    Liu MQ, Qin Y, Hu QS, Liu WS, Ji SR, Xu WY, et al. 2021. SETD8 potentiates constitutive ERK1/2 activation via epigenetically silencing DUSP10 expression in pancreatic cancer. Cancer Letters, 499: 265−278. doi: 10.1016/j.canlet.2020.11.023
    Ma FL, Du XM, Wei YD, Zhou Z, Clotaire DZJ, Li N, et al. 2019. LIN28A activates the transcription of NANOG in dairy goat male germline stem cells. Journal of Cellular Physiology, 234(6): 8113−8121. doi: 10.1002/jcp.27593
    Ma YY, Yu T, Cai YX, Wang HY. 2018. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discovery, 4: 21.
    Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, et al. 2012. The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3): 590−604. doi: 10.1016/j.cell.2012.03.026
    Moss EG, Lee RC, Ambros V. 1997. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, 88(5): 637−646. doi: 10.1016/S0092-8674(00)81906-6
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2): 153−183.
    Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A. 2007. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes & Development, 21(9): 1125−1138.
    Richards M, Tan SP, Tan JH, Chan WK, Bongso A. 2004. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22(1): 51−64. doi: 10.1634/stemcells.22-1-51
    Romer-Seibert JS, Hartman NW, Moss EG. 2019. The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis. FASEB Journal, 33(3): 3291−3303. doi: 10.1096/fj.201801118R
    Sang H, Wang D, Zhao S, Zhang JX, Zhang Y, Xu J, et al. 2019. Dppa3 is critical for Lin28a-regulated ES cells naïve-primed state conversion. Journal of Molecular Cell Biology, 11(6): 474−488. doi: 10.1093/jmcb/mjy069
    Shaul YD, Seger R. 2007. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8): 1213−1226. doi: 10.1016/j.bbamcr.2006.10.005
    Shyh-Chang N, Daley GQ. 2013. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell, 12(4): 395−406. doi: 10.1016/j.stem.2013.03.005
    Tsanov KM, Daley GQ. 2017. Signaling through RNA-binding proteins as a cell fate regulatory mechanism. Cell Cycle, 16(8): 723−724. doi: 10.1080/15384101.2017.1302205
    Tsanov KM, Pearson DS, Wu ZT, Han A, Triboulet R, Seligson MT, et al. 2017. LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency. Nature Cell Biology, 19(1): 60−67. doi: 10.1038/ncb3453
    Wei YD, Du XM, Yang DH, Ma FL, Yu XW, Zhang MF, et al. 2021. Dmrt1 regulates the immune response by repressing the TLR4 signaling pathway in goat male germline stem cells. Zoological Research, 42(1): 14−27.
    Xu BS, Zhang KX, Huang YQ. 2009. Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA, 15(3): 357−361. doi: 10.1261/rna.1368009
    Xu JJ, Zheng Z, Du XG, Shi BB, Wang JC, Gao DF, et al. 2020. A cytokine screen using CRISPR-Cas9 knock-in reporter pig iPS cells reveals that Activin A regulates NANOG. Stem Cell Research & Therapy, 11(1): 67.
    Xue BH, Li Y, He YL, Wei RY, Sun RZ, Yin Z, et al. 2016. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS One, 11(3): e0151737. doi: 10.1371/journal.pone.0151737
    Yang DH, Moss EG. 2003. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expression Patterns, 3(6): 719−726. doi: 10.1016/S1567-133X(03)00140-6
    Yermalovich AV, Osborne JK, Sousa P, Han A, Kinney MA, Chen MJ, et al. 2020. Author correction: Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 11(1): 1327. doi: 10.1038/s41467-020-14944-3
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. 2008. The ground state of embryonic stem cell self-renewal. Nature, 453(7194): 519−523. doi: 10.1038/nature06968
    Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian SL, et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917−1920. doi: 10.1126/science.1151526
    Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu ZT, Ficarro SB, Yu CX, et al. 2016. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell, 19(1): 66−80. doi: 10.1016/j.stem.2016.05.009
    Zhang SQ, Guo YJ, Cui Y, Liu YJ, Yu T, Wang HY. 2015. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Reviews and Reports, 11(1): 24−38. doi: 10.1007/s12015-014-9552-x
    Zhang SQ, Xie YL, Cao HX, Wang HY. 2017. Common microRNA-mRNA interactions exist among distinct porcine iPSC lines independent of their metastable pluripotent states. Cell Death & Disease, 8(8): e3027.
    Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, et al. 2011. The Lin28/let-7 axis regulates glucose metabolism. Cell, 147(1): 81−94. doi: 10.1016/j.cell.2011.08.033
    Zhu ZS, Pan Q, Zhao WX, Wu XL, Yu S, Shen QY, et al. 2021. BCL2 enhances survival of porcine pluripotent stem cells through promoting FGFR2. Cell Proliferation, 54(1): e12932.
    Zhu ZS, Wu XL, Li Q, Zhang JQ, Yu S, Shen QY, et al. 2021. Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB Journal. doi: 10.1096/fj.202100230R.
  • zr-42-3-377-S1.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1661) PDF downloads(184) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint