Volume 41 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Chang-Hong Li, Jie Chen, Li Nie, Jiong Chen. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zoological Research, 2020, 41(6): 644-655. doi: 10.24272/j.issn.2095-8137.2020.211
Citation: Chang-Hong Li, Jie Chen, Li Nie, Jiong Chen. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zoological Research, 2020, 41(6): 644-655. doi: 10.24272/j.issn.2095-8137.2020.211

MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris

doi: 10.24272/j.issn.2095-8137.2020.211
#Authors contributed equally to this work
Funds:  This project was supported by the National Natural Science Foundation of China (31972821, 31772876), Zhejiang Provincial Natural Science Foundation of China (LZ18C190001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
More Information
  • Corresponding author: E-mail: chenjiong@nbu.edu.cn
  • Received Date: 2020-08-01
  • Accepted Date: 2020-10-10
  • Published Online: 2020-10-11
  • Publish Date: 2020-11-18
  • Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host’s innate immune system. We previously demonstrated that mudskipper (Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia (Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1β, and BpTGFβ in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Bąbolewska E, Brzezińska-Błaszczyk E. 2015. Human-derived cathelicidin LL-37 directly activates mast cells to proinflammatory mediator synthesis and migratory response. Cellular Immunology, 293(2): 67−73. doi: 10.1016/j.cellimm.2014.12.006
    [2]
    Barrile F, M'Kadmi C, De Francesco PN, Cabral A, Romero GG, Mustafá ER, et al. 2019. Development of a novel fluorescent ligand of growth hormone secretagogue receptor based on the N-Terminal Leap2 region. Molecular and Cellular Endocrinology, 498: 110573. doi: 10.1016/j.mce.2019.110573
    [3]
    Bo J, Yang Y, Zheng RH, Fang C, Jiang YL, Liu J, et al. 2019. Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish & Shellfish Immunology, 93: 1007−1017.
    [4]
    Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nature Reviews Microbiology, 3(3): 238−250. doi: 10.1038/nrmicro1098
    [5]
    Brown KL, Hancock REW. 2006. Cationic host defense (antimicrobial) peptides. Current Opinion in Immunology, 18(1): 24−30. doi: 10.1016/j.coi.2005.11.004
    [6]
    Chen J, Chen Q, Lu XJ, Chen J. 2016. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. Fish & Shellfish Immunology, 59: 66−76.
    [7]
    Chen J, Lv YP, Dai QM, Hu ZH, Liu ZM, Li JH. 2019. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo). Fish & Shellfish Immunology, 87: 184−192.
    [8]
    Chen J, Nie L, Chen J. 2018. Mudskipper (Boleophthalmus pectinirostris) hepcidin-1 and hepcidin-2 present different gene expression profile and antibacterial activity and possess distinct protective effect against Edwardsiella tarda infection. Probiotics and Antimicrobial Proteins, 10(2): 176−185. doi: 10.1007/s12602-017-9352-0
    [9]
    Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, et al. 2018. Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Reports, 19(7): e45453.
    [10]
    Ding FF, Li CH, Chen J. 2019. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: antimicrobial activity and immunomodulatory activity on monocytes/macrophages. Fish & Shellfish Immunology, 92: 256−264.
    [11]
    Elssner A, Duncan M, Gavrilin M, Wewers MD. 2004. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. The Journal of Immunology, 172(8): 4987−4994. doi: 10.4049/jimmunol.172.8.4987
    [12]
    Fabisiak A, Murawska N, Fichna J. 2016. LL-37: cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacological Reports, 68(4): 802−808. doi: 10.1016/j.pharep.2016.03.015
    [13]
    Fruitwala S, El-Naccache DW, Chang TL. 2019. Multifaceted immune functions of human defensins and underlying mechanisms. Seminars in Cell & Developmental Biology, 88: 163−172.
    [14]
    Ge XC, Yang H, Bednarek MA, Galon-Tilleman H, Chen PR, Chen M, et al. 2018. LEAP2 is an endogenous antagonist of the ghrelin receptor. Cell Metabolism, 27(2): 461−469. doi: 10.1016/j.cmet.2017.10.016
    [15]
    Guan F, Lu XJ, Li CH, Chen J. 2017. Molecular characterization of mudskipper (Boleophthalmus pectinirostris) hypoxia-inducible factor-1α (HIF-1α) and analysis of its function in monocytes/macrophages. PLoS One, 12(5): e0177960. doi: 10.1371/journal.pone.0177960
    [16]
    Gupta K, Subramanian H, Ali H. 2016. Modulation of host defense peptide-mediated human mast cell activation by LPS. Innate Immunity, 22(1): 21−30. doi: 10.1177/1753425915610643
    [17]
    Hale JDF, Hancock REW. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Review of Anti-infective Therapy, 5(6): 951−959. doi: 10.1586/14787210.5.6.951
    [18]
    Hancock REW, Haney EF, Gill EE. 2016. The immunology of host defence peptides: Beyond antimicrobial activity. Nature Reviews Immunology, 16(5): 321−334. doi: 10.1038/nri.2016.29
    [19]
    Hancock REW, Nijnik A, Philpott DJ. 2012. Modulating immunity as a therapy for bacterial infections. Nature Reviews Microbiology, 10(4): 243−254. doi: 10.1038/nrmicro2745
    [20]
    Howard A, Townes C, Milona P, Nile CJ, Michailidis G, Hall J. 2010. Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. Cellular Immunology, 261(2): 128−133. doi: 10.1016/j.cellimm.2009.11.010
    [21]
    Jiang W, Chen J, Guo ZP, Zhang L, Chen GP. 2020. Molecular characterization of a MOSPD2 homolog in the barbel steed (Hemibarbus labeo) and its involvement in monocyte/macrophage and neutrophil migration. Molecular Immunology, 119: 8−17. doi: 10.1016/j.molimm.2020.01.002
    [22]
    Krause A, Sillard R, Kleemeier B, Klüver E, Maronde E, Conejo-García JR, et al. 2003. Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Science, 12(1): 143−152. doi: 10.1110/ps.0213603
    [23]
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [24]
    Li CH, Lu XJ, Li MY, Chen J. 2015a. Cathelicidin modulates the function of monocytes/macrophages via the P2X7 receptor in a teleost, Plecoglossus altivelis. Fish & Shellfish Immunology, 47(2): 878−885.
    [25]
    Li HX, Lu XJ, Li CH, Chen J. 2014. Molecular characterization and functional analysis of two distinct liver-expressed antimicrobial peptide 2 (LEAP-2) genes in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 38(2): 330−339.
    [26]
    Li HX, Lu XJ, Li CH, Chen J. 2015b. Molecular characterization of the liver-expressed antimicrobial peptide 2 (LEAP-2) in a teleost fish, Plecoglossus altivelis: antimicrobial activity and molecular mechanism. Molecular Immunology, 65(2): 406−415. doi: 10.1016/j.molimm.2015.02.022
    [27]
    Liu B, Liu GD, Guo HY, Zhu KC, Guo L, Zhang N, et al. 2020. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) from golden pompano Trachinotus ovatus (Linnaeus 1758). Fish & Shellfish Immunology, 104: 419−430.
    [28]
    Liu TX, Gao YH, Wang RX, Xu TJ. 2014. Characterization, evolution and functional analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in miiuy croaker. Fish & Shellfish Immunology, 41(2): 191−199.
    [29]
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [30]
    Lu XJ, Chen J, Huang ZA, Shi YH, Lü JN. 2011. Identification and characterization of a novel cathelicidin from ayu, Plecoglossus altivelis. Fish & Shellfish Immunology, 31(1): 52−57.
    [31]
    Luo SW, Luo KK, Liu SJ. 2020. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228: 108665.
    [32]
    Mendel I, Yacov N, Salem Y, Propheta-Meiran O, Ishai E, Breitbart E. 2017. Identification of motile sperm domain-containing protein 2 as regulator of human monocyte migration. The Journal of Immunology, 198(5): 2125−2132. doi: 10.4049/jimmunol.1601662
    [33]
    Nagaoka I, Tamura H, Hirata M. 2006. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. The Journal of Immunology, 176(5): 3044−3052. doi: 10.4049/jimmunol.176.5.3044
    [34]
    Rajanbabu V, Chen JY. 2011. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages. Peptides, 32(2): 333−341. doi: 10.1016/j.peptides.2010.11.004
    [35]
    Ren Y, Liu SF, Nie L, Cai SY, Chen J. 2019. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: insights into functional conservation of NOD2 in antibacterial innate immunity. Zoological Research, 40(2): 77−88. doi: 10.24272/j.issn.2095-8137.2018.066
    [36]
    Röhrl J, Yang D, Oppenheim JJ, Hehlgans T. 2008. Identification and biological characterization of mouse β-defensin 14, the orthologue of human β-defensin 3. The Journal of Biological Chemistry, 283(9): 5414−5419. doi: 10.1074/jbc.M709103200
    [37]
    Röhrl J, Yang D, Oppenheim JJ, Hehlgans T. 2010. Human β-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. The Journal of Immunology, 184(12): 6688−6694. doi: 10.4049/jimmunol.0903984
    [38]
    Salem Y, Yacov N, Propheta-Meiran O, Breitbart E, Mendel I. 2019. Newly characterized motile sperm domain-containing protein 2 promotes human breast cancer metastasis. International Journal of Cancer, 144(1): 125−135. doi: 10.1002/ijc.31665
    [39]
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. 2002. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. The Journal of Immunology, 169(7): 3883−3891. doi: 10.4049/jimmunol.169.7.3883
    [40]
    Shata MTM, Abdel-Hameed EA, Hetta HF, Sherman KE. 2013. Immune activation in HIV/HCV-infected patients is associated with low-level expression of liver expressed antimicrobial peptide-2 (LEAP-2). Journal of Clinical Pathology, 66(11): 967−975. doi: 10.1136/jclinpath-2013-201581
    [41]
    Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. 2020. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zoological Research, 41(2): 123−137. doi: 10.24272/j.issn.2095-8137.2020.026
    [42]
    Shi YH, Chen J, Li CH, Yang HY, Lu XJ. 2011. The establishment of a library screening method based on Yeast Two-Hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis. Fish & Shellfish Immunology, 30(4-5): 1184−1187.
    [43]
    Subramanian H, Gupta K, Guo Q, Price R, Ali H. 2011. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. Journal of Biological Chemistry, 286(52): 44739−44749.
    [44]
    Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS. 2006. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. International Archives of Allergy and Immunology, 140(2): 103−112. doi: 10.1159/000092305
    [45]
    Townes CL, Michailidis G, Nile CJ, Hall J. 2004. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infection and Immunity, 72(12): 6987−6993. doi: 10.1128/IAI.72.12.6987-6993.2004
    [46]
    Trenkle T, McClelland M, Adlkofer K, Welsh J. 2000. Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene, 245(1): 139−149. doi: 10.1016/S0378-1119(00)00026-3
    [47]
    Vandamme D, Landuyt B, Luyten W, Schoofs L. 2012. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cellular Immunology, 280(1): 22−35. doi: 10.1016/j.cellimm.2012.11.009
    [48]
    Wang YP, Lu Y, Zhang Y, Ning ZM, Li Y, Zhao Q, et al. 2015. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nature Genetics, 47(6): 625−631. doi: 10.1038/ng.3280
    [49]
    Wu YJ, Li DD, Wang Y, Liu X, Zhang YQ, Qu WT, et al. 2018. Beta-defensin 2 and 3 promote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene-1 and c-FOS. Frontiers in Immunology, 9: 211. doi: 10.3389/fimmu.2018.00211
    [50]
    Yacov N, Kafri P, Salem Y, Propheta-Meiran O, Feldman B, Breitbart E, et al. 2020. MOSPD2 is a therapeutic target for the treatment of CNS inflammation. Clinical & Experimental Immunology, 201(2): 105−120.
    [51]
    Yang J, Lu XJ, Chai FC, Chen J. 2016. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea). Zoological Research, 37(6): 347−355.
    [52]
    Zahran E, Risha E, Elbahnaswy S, Mahgoub HA, El-Moaty AA. 2019. Tilapia piscidin 4 (TP4) enhances immune response, antioxidant activity, intestinal health and protection against Streptococcus iniae infection in Nile tilapia. Aquaculture, 513: 734451. doi: 10.1016/j.aquaculture.2019.734451
    [53]
    Zhang ZQ, Yuan B, Bao MS, Lu N, Kim T, Liu YJ. 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunology, 12(10): 959−965. doi: 10.1038/ni.2091
    [54]
    Zhou Y, Zhou QJ, Qiao Y, Chen J, Li MY. 2020. The host defense peptide β-defensin confers protection against Vibrio anguillarum in ayu, Plecoglossus altivelis. Developmental & Comparative Immunology, 103: 103511.
    [55]
    Zhu JY, Wang H, Wang J, Wang XL, Peng S, Geng Y, et al. 2017. Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus. Molecular Immunology, 85: 256−264. doi: 10.1016/j.molimm.2017.03.009
  • ZR-2020-211 Supplementary Table.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1902) PDF downloads(262) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return