Citation: | Yin-Qiao Wu, Heng Zhao, Ying-Ju Li, Saber Khederzadeh, Hong-Jiang Wei, Zhong-Yin Zhou, Ya-Ping Zhang. Genome-wide identification of imprinted genes in pigs and their different imprinting status compared with other mammals. Zoological Research, 2020, 41(6): 721-725. doi: 10.24272/j.issn.2095-8137.2020.072 |
[1] |
Ahn B, Choi MK, Yum J, Cho IC, Kim JH, Park C. 2019. Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross. Asian-Australasian Journal of Animal Sciences, 32(12): 1816−1825. doi: 10.5713/ajas.19.0097
|
[2] |
Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. 1991. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature, 349(6304): 84−87. doi: 10.1038/349084a0
|
[3] |
Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, Nonneman D, et al. 2009. Characterization of conserved and nonconserved imprinted genes in swine. Biology of Reproduction, 81(5): 906−920. doi: 10.1095/biolreprod.109.078139
|
[4] |
Braunschweig MH. 2012. Biallelic transcription of the porcine IGF2R gene. Gene, 500(2): 181−185. doi: 10.1016/j.gene.2012.03.059
|
[5] |
Genau HM, Huber J, Baschieri F, Akutsu M, Dötsch V, Farhan H, et al. 2015. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling. Molecular Cell, 57(6): 995−1010. doi: 10.1016/j.molcel.2014.12.040
|
[6] |
Gould TD, Pfeifer K. 1998. Imprinting of mouse Kvlqt1 is developmentally regulated. Human Molecular Genetics, 7(3): 483−487. doi: 10.1093/hmg/7.3.483
|
[7] |
Grandjean V, O'Neill L, Sado T, Turner B, Ferguson-Smith A. 2001. Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2‐H19 domain. FEBS Letters, 488(3): 165−169. doi: 10.1016/S0014-5793(00)02349-8
|
[8] |
Hayward BE, Moran V, Strain L, Bonthron DT. 1998. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proceedings of the National Academy of Sciences of the United States of America, 95(26): 15475−15480. doi: 10.1073/pnas.95.26.15475
|
[9] |
Hu XT, Kuang YY, Li LL, Tang HM, Shi QL, Shu XS, et al. 2017. Epigenomic and functional characterization of junctophilin 3 (JPH3) as a novel tumor suppressor being frequently inactivated by promoter CpG methylation in digestive cancers. Theranostics, 7(7): 2150−2163. doi: 10.7150/thno.18185
|
[10] |
Inoue A, Jiang L, Lu FL, Suzuki T, Zhang Y. 2017. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 547(7664): 419−424. doi: 10.1038/nature23262
|
[11] |
Kagitani F, Kuroiwa Y, Wakana S, Shiroishi T, Miyoshi N, Kobayashi S, et al. 1997. Peg5/Neuronatin is an imprinted gene located on sub-distal chromosome 2 in the mouse. Nucleic Acids Research, 25(17): 3428−3432. doi: 10.1093/nar/25.17.3428
|
[12] |
Kalscheuer VM, Mariman ECM, Schepens MT, Rehder H, Ropers HH. 1993. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genetics, 5(1): 74−78. doi: 10.1038/ng0993-74
|
[13] |
Killian JK, Nolan CM, Wylie AA, Li T, Vu TH, Hoffman AR, et al. 2001. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Human Molecular Genetics, 10(17): 1721−1728. doi: 10.1093/hmg/10.17.1721
|
[14] |
Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. 1994. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes & Development, 8(24): 2953−2963.
|
[15] |
Lee MP, Hu RJH, Johnson LA, Feinberg AP. 1997. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nature Genetics, 15(2): 181−185. doi: 10.1038/ng0297-181
|
[16] |
Li E, Beard C, Jaenisch R. 1993. Role for DNA methylation in genomic imprinting. Nature, 366(6453): 362−365. doi: 10.1038/366362a0
|
[17] |
Li L, Dong J, Yan LY, Yong J, Liu XX, Hu YQ, et al. 2017. Single-Cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell, 20(6): 891−892. doi: 10.1016/j.stem.2017.05.009
|
[18] |
McGrath J, Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 37(1): 179−183. doi: 10.1016/0092-8674(84)90313-1
|
[19] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky AM, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
|
[20] |
Oczkowicz M, Szmatola T, Piórkowska K, Ropka-Molik K. 2018. Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene, 641: 367−375. doi: 10.1016/j.gene.2017.10.076
|
[21] |
Owens JA. 1991. Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reproduction, Fertility and Development, 3(5): 501−517. doi: 10.1071/RD9910501
|
[22] |
Park CH, Uh KJ, Mulligan BP, Jeung EB, Hyun SH, Shin T, et al. 2011. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One, 6(7): e22216. doi: 10.1371/journal.pone.0022216
|
[23] |
Ramírez F, Ryan D, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 44(W1): W160−W165. doi: 10.1093/nar/gkw257
|
[24] |
Rubin CJ, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, et al. 2012. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America, 109(48): 19529−19536. doi: 10.1073/pnas.1217149109
|
[25] |
Shen CJ, Cheng WTK, Wu SC, Chen HL, Tsai TC, Yang SH, et al. 2012. Differential differences in methylation status of putative imprinted genes among cloned swine genomes. PLoS One, 7(2): e32812. doi: 10.1371/journal.pone.0032812
|
[26] |
Sleutels F, Zwart R, Barlow DP. 2002. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415(6873): 810−813. doi: 10.1038/415810a
|
[27] |
Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, et al. 1993. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell, 73(1): 61−71. doi: 10.1016/0092-8674(93)90160-R
|
[28] |
Surani MAH, Barton SC, Norris ML. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 308(5959): 548−550. doi: 10.1038/308548a0
|
[29] |
Thorvaldsen JL, Bartolomei MS. 2007. SnapShot: imprinted gene clusters. Cell, 130(5): 958.e1−958.e2. doi: 10.1016/j.cell.2007.08.033
|
[30] |
Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425(6960): 832−836. doi: 10.1038/nature02064
|
[31] |
Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP. 1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature, 389(6652): 745−749. doi: 10.1038/39631
|
[32] |
Yan S, Tu ZC, Liu ZM, Fan NN, Yang HM, Yang S, et al. 2018. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington’s disease. Cell, 173(4): 989−1002.e13. doi: 10.1016/j.cell.2018.03.005
|
[33] |
Yan WS, Scoumanne A, Jung YS, Xu ES, Zhang J, Zhang YH, et al. 2016. Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes & Development, 30(5): 522−534.
|
[34] |
Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. 2008. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nature Genetics, 40(9): 1092−1097. doi: 10.1038/ng.207
|
![]() |
![]() |