Volume 41 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Long-Wu Wang, Guo Zhong, Gang-Bin He, Yu-Han Zhang, Wei Liang. Egg laying behavior of common cuckoos (Cuculus canorus): Data based on field video-recordings. Zoological Research, 2020, 41(4): 458-464. doi: 10.24272/j.issn.2095-8137.2020.021
Citation: Long-Wu Wang, Guo Zhong, Gang-Bin He, Yu-Han Zhang, Wei Liang. Egg laying behavior of common cuckoos (Cuculus canorus): Data based on field video-recordings. Zoological Research, 2020, 41(4): 458-464. doi: 10.24272/j.issn.2095-8137.2020.021

Egg laying behavior of common cuckoos (Cuculus canorus): Data based on field video-recordings

doi: 10.24272/j.issn.2095-8137.2020.021
Funds:  This work was supported by the National Natural Science Foundation of China (31660617 and 31960105 to L.W.W., 31772453 and 31970427 to W.L.). L.W.W. was funded by the Initial Fund Key Laboratories of Guizhou Province (2011-4005) and Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province (U1812401)
More Information
  • Corresponding author: E-mail: liangwei@hainnu.edu.cn
  • Received Date: 2020-02-22
  • Accepted Date: 2020-05-14
  • Published Online: 2020-05-21
  • Publish Date: 2020-07-18
  • The egg laying behavior of brood parasites is at the heart of studies on host co-evolution. Therefore, research on egg laying behavior can improve our understanding of brood parasitism and associated processes. Over a seven year study period, we monitored 455 oriental reed warbler (Acrocephalus orientalis) nests during the egg laying period, 250 of which were parasitized by common cuckoos (Cuculus canorus). We collected 53 clear videos of common cuckoo parasitism, analyzed all recorded parasitic behavior in detail, and summarized the process of brood parasitism. Furthermore, based on analyses of the field video recordings, we propose a new explanation for egg removal behavior, namely the delivery hypothesis, i.e., egg pecking and biting by cuckoos may facilitate fast egg-laying and parasitism by reducing host attention and attack, with egg removal a side effect of egg pecking and biting. We concluded that common cuckoos change their behavior when hosts are present at the nest, with a set of behaviors performed to deal with host attack and successfully complete parasitic egg-laying regardless of time of day.

  • loading
  • [1]
    Antonov A, Stokke BG, Moksnes A, Kleven O, Honza M, Røskaft E. 2006. Eggshell strength of an obligate brood parasite: a test of the puncture resistance hypothesis. Behavioral Ecology and Sociobiology, 60(1): 11−18. doi: 10.1007/s00265-005-0132-6
    Antonov A, Stokke BG, Moksnes A, Røskaft E. 2007. First evidence of regular common cuckoo, Cuculus canorus, parasitism on eastern olivaceous warblers, Hippolais pallida elaeica. Naturwissenschaften, 94(4): 307−312. doi: 10.1007/s00114-006-0189-8
    Antonov A, Stokke BG, Moksnes A, Røskaft E. 2008. Does the cuckoo benefit from laying unusually strong eggs?. Animal Behaviour, 76(6): 1893−1900. doi: 10.1016/j.anbehav.2008.08.016
    Brooker LC, Brooker MG, Brooker AMH. 1990. An alternative population/genetics model for the evolution of egg mimesis and egg crypsis in cuckoos. Journal of Theoretical Biology, 146(1): 123−143. doi: 10.1016/S0022-5193(05)80048-7
    Brooker MG, Brooker LC. 1991. Eggshell strength in cuckoos and cowbirds. Ibis, 133(4): 406−413.
    Chance EP. 1940. The Truth about the Cuckoo. London: Country Life.
    Davies NB, de L. Brooke M. 1988. Cuckoos versus reed warblers: Adaptations and counteradaptations. Animal Behaviour, 36(1): 262−284. doi: 10.1016/S0003-3472(88)80269-0
    Davies NB. 2000. Cuckoos, Cowbirds and other Cheats. London: T & AD Poyser.
    Davies NB. 2011. Cuckoo adaptations: trickery and tuning. Journal of Zoology, 284(1): 1−14. doi: 10.1111/j.1469-7998.2011.00810.x
    Deng ZQ, Lloyd H, Xia CW, Møller AP, Liang W, Zhang YY. 2019. Components of variation in female common cuckoo calls. Behavioural Processes, 158: 106−112. doi: 10.1016/j.beproc.2018.10.007
    Edwards G, Hosking E, Smith S. 1950. Reactions of some passerine birds to a stuffed cuckoo. II. A detailed study of the willow-warbler. British Birds, 43: 144−150.
    Ellison KS, Fiorini VD, Gloag R, Sealy SG. 2020. Video recordings of brown-headed (Molothrus ater) and shiny (M. bonariensis) cowbirds reveal oviposition from an elevated position: implications for host–parasite coevolution. The Wilson Journal of Ornithology, 131(4): 789−795. doi: 10.1676/1559-4491-131.4.789
    Feeney WE, Medina I, Somveille M, Heinsohn R, Hall ML, Mulder RA, Stein JA, Kilner RM, Langmore NE. 2013. Brood parasitism and the evolution of cooperative breeding in birds. Science, 342(6165): 1506−1508. doi: 10.1126/science.1240039
    Feeney WE, Welbergen JA, Langmore NE. 2012. The frontline of avian brood parasite–host coevolution. Animal Behaviour, 84(1): 3−12. doi: 10.1016/j.anbehav.2012.04.011
    Feeney WE, Welbergen JA, Langmore NE. 2014. Advances in the study of coevolution between avian brood parasites and their hosts. Annual Review of Ecology, Evolution, and Systematics, 45: 227−246. doi: 10.1146/annurev-ecolsys-120213-091603
    Fossøy F, Sorenson MD, Liang W, Ekrem T, Moksnes A, Møller AP, Rutila J, Røskaft E, Takasu F, Yang CC, Stokke BG. 2016. Ancient origin and maternal inheritance of blue cuckoo eggs. Nature Communications, 7: 10272. doi: 10.1038/ncomms10272
    Gloag R, Fiorini VD, Reboreda JC, Kacelnik A. 2013. The wages of violence: mobbing by mockingbirds as a frontline defence against brood-parasitic cowbirds. Animal Behaviour, 86(5): 1023−1029. doi: 10.1016/j.anbehav.2013.09.007
    Gloag R, Keller LA, Langmore NE. 2014. Cryptic cuckoo eggs hide from competing cuckoos. Proceedings of the Royal Society B: Biological Sciences, 281(1792): 20141014. doi: 10.1098/rspb.2014.1014
    Grim T. 2005. Host recognition of brood parasites: implications for methodology in studies of enemy recognition. The Auk, 122(2): 530−543. doi: 10.1093/auk/122.2.530
    Grim T, Rutila J, Cassey P, Hauber ME. 2009. The cost of virulence: An experimental study of egg eviction by brood parasitic chicks. Behavioral Ecology, 20(5): 1138−1146. doi: 10.1093/beheco/arp108
    Honza M, Taborsky B, Taborsky M, Teuschl Y, Vogl W, Moksnes A, Røskaft E. 2002. Behaviour of female common cuckoos, Cuculus canorus, in the vicinity of host nests before and during egg laying: A radiotelemetry study. Animal Behaviour, 64(6): 861−868. doi: 10.1006/anbe.2002.1969
    Langmore NE, Kilner RM. 2009. Why do Horsfield’s bronze-cuckoo Chalcites basalis eggs mimic those of their hosts?. Behavioral Ecology and Sociobiology, 63(8): 1127−1131. doi: 10.1007/s00265-009-0759-9
    Li DL, Zhang ZW, Grim T, Liang W, Stokke BG. 2016. Explaining variation in brood parasitism rates between potential host species with similar habitat requirements. Evolutionary Ecology, 30(5): 905−923. doi: 10.1007/s10682-016-9850-7
    Liang GX, Yang CC, Wang LW, Liang W. 2014. Variation in parasitism rates by common cuckoos among three populations of the Oriental reed warblers. Sichuan Journal of Zoology, 33(5): 673−677. (in Chinese)
    Ma LK, Yang CC, Liang W. 2018. Hawk mimicry does not reduce attacks of cuckoos by highly aggressive hosts. Avian Research, 9(1): 35. doi: 10.1186/s40657-018-0127-4
    Martín-Gálvez D, Soler M, Soler JJ, Martín-Vivaldi M, Palomino JJ. 2005. Food acquisition by common cuckoo chicks in rufous bush robin nests and the advantage of eviction behaviour. Animal Behaviour, 70(6): 1313−1321. doi: 10.1016/j.anbehav.2005.03.031
    Medina I, Hall ML, Taylor CJ, Mulder RA, Langmore NE. 2019. Experimental increase in eviction load does not impose a growth cost for cuckoo chicks. Behavioral Ecology and Sociobiology, 73(4): 44. doi: 10.1007/s00265-019-2655-2
    Moksnes A, Fossøy F, Røskaft E, Stokke BG. 2013. Reviewing 30 years of studies on the common cuckoo: accumulated knowledge and future perspectives. Chinese Birds, 4(1): 3−14. doi: 10.5122/cbirds.2013.0001
    Moksnes A, Øskaft ER. 1995. Egg‐morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. Journal of Zoology, 236(4): 625−648. doi: 10.1111/j.1469-7998.1995.tb02736.x
    Moksnes A, Røskaft E, Hagen LG, Honza M, Mørk C, Olsen PH. 2000. Common cuckoo Cuculus canorus and host behaviour at reed warbler Acrocephalus scirpaceus nests. Ibis, 142(2): 247−258.
    Nakamura H, Miyazawa Y, Kashiwagi K. 2005. Behavior of radio-tracked common cuckoo females during the breeding season in Japan. Ornithological Science, 4(1): 31−41. doi: 10.2326/osj.4.31
    Payne RB, Payne LL, Woods JL, Sorenson MD. 2000. Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeata. Animal Behaviour, 59(1): 69−81. doi: 10.1006/anbe.1999.1283
    Payne RB, Woods JL, Payne LL. 2001. Parental care in estrildid finches: experimental tests of a model of Vidua brood parasitism. Animal Behaviour, 62(3): 473−483. doi: 10.1006/anbe.2001.1773
    Peer BD. 2006. Egg destruction and egg removal by avian brood parasites: Adaptiveness and consequences. The Auk, 123(1): 16−22. doi: 10.1093/auk/123.1.16
    Picman J, Pribil S. 1997. Is greater eggshell density an alternative mechanism by which parasitic cuckoos increase the strength of their eggs?. Journal für Ornithologie, 138(4): 531−541. doi: 10.1007/BF01651384
    Scardamaglia RC, Fiorini VD, Kacelnik A, Reboreda JC. 2017. Planning host exploitation through prospecting visits by parasitic cowbirds. Behavioral Ecology and Sociobiology, 71(1): 23. doi: 10.1007/s00265-016-2250-8
    Scott DM, Weatherhead PJ, Ankney CD. 1992. Egg-eating by female brown-headed cowbirds. The Condor, 94(3): 579−584. doi: 10.2307/1369242
    Sealy SG. 1992. Removal of yellow warbler eggs in association with cowbird parasitism. The Condor, 94(1): 40−54. doi: 10.2307/1368794
    Sealy SG, Neudorf DL, Hill DP. 1995. Rapid laying by brown‐headed cowbirds Molothrus ater and other parasitic birds. Ibis, 137(1): 76−84.
    Soler J, Soler M. 2000. Brood-parasite interactions between great spotted cuckoos and magpies: a model system for studying coevolutionary relationships. Oecologia, 125(3): 309−320. doi: 10.1007/s004420000487
    Soler M. 2014. Long–term coevolution between avian brood parasites and their hosts. Biological Reviews, 89(3): 688−704. doi: 10.1111/brv.12075
    Soler M. 2017. Avian Brood Parasitism. Behaviour, Ecology, Evolution and Coevolution. Cham: Springer.
    Spottiswoode CN, Colebrook-Robjent JFR. 2007. Egg puncturing by the brood parasitic greater honeyguide and potential host counteradaptations. Behavioral Ecology, 18(4): 792−799. doi: 10.1093/beheco/arm025
    Spottiswoode CN. 2010. The evolution of host‐specific variation in cuckoo eggshell strength. Journal of Evolutionary Biology, 23(8): 1792−1799. doi: 10.1111/j.1420-9101.2010.02010.x
    Šulc M, Procházka P, Capek M, Honza M. 2016. Common cuckoo females are not choosy when removing an egg during parasitism. Behavioral Ecology, 27(6): 1642−1649.
    Thorogood R, Davies NB. 2016. Combining personal with social information facilitates host defences and explains why cuckoos should be secretive. Scientific Reports, 6(1): 19872. doi: 10.1038/srep19872
    Trnka A, Prokop P. 2012. The effectiveness of hawk mimicry in protecting cuckoos from aggressive hosts. Animal Behaviour, 83(1): 263−268. doi: 10.1016/j.anbehav.2011.10.036
    Wang XP, Yang SL, Lu M, Liu CG, Tan B, Yang RC, Zhou MD, Luo YJ, He ZQ. 2018. The egg-laying behavior of Sanshui duck. Jiangsu Agricultural Sciences, 46(17): 188−191. (in Chinese)
    Wyllie I. 1981. The Cuckoo. London: Batsford.
    Yang CC, Huang QL, Wang LW, Du WG, Liang W, Møller AP. 2018. Keeping eggs warm: thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. The Science of Nature, 105(1–2): 10.
    Yang CC, Liang W, Antonov A, Cai Y, Stokke BG, Fossøy F, Moksnes A, Røskaft E. 2012. Diversity of parasitic cuckoos and their hosts in China. Chinese Birds, 3(1): 9−32. doi: 10.5122/cbirds.2012.0004
    Yang CC, Wang LW, Liang W, Møller AP. 2016a. Do common cuckoos (Cuculus canorus) possess an optimal laying behaviour to match their own egg phenotype to that of their Oriental reed warbler (Acrocephalus orientalis) hosts?. Biological Journal of the Linnean Society, 117(3): 422−427. doi: 10.1111/bij.12690
    Yang CC, Wang LW, Liang W, Møller AP. 2016b. Egg recognition as antiparasitism defence in hosts does not select for laying of matching eggs in parasitic cuckoos. Animal Behaviour, 122: 177−181. doi: 10.1016/j.anbehav.2016.10.018
    Yang CC, Wang LW, Liang W, Møller AP. 2017. How cuckoos find and choose host nests for parasitism. Behavioral Ecology, 28(3): 859−865. doi: 10.1093/beheco/arx049
    York JE, Davies NB. 2017. Female cuckoo calls misdirect host defences towards the wrong enemy. Nature Ecology & Evolution, 1(10): 1520−1525.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (2052) PDF downloads(142) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint