Citation: | Huan-Zhi Chen, Hong-Yi Yang, Kai Zhong, Jia-Li Li. Preliminary study on fine structures of subcortical nuclei in rhesus monkeys by ex vivo 9.4 T MRI. Zoological Research, 2020, 41(2): 199-202. doi: 10.24272/j.issn.2095-8137.2020.013 |
[1] |
Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, Malykhin NV. 2013. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biological Psychiatry, 74(1): 62−68. doi: 10.1016/j.biopsych.2013.01.005
|
[2] |
Janak PH, Tye KM. 2015. From circuits to behaviour in the amygdala. Nature, 517(7534): 284−292. doi: 10.1038/nature14188
|
[3] |
Knickmeyer RC, Styner M, Short SJ, Lubach GR, Kang C, Hamer R, Coe CL, Gilmore JH. 2010. Maturational trajectories of cortical brain development through the pubertal transition: unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cerebral Cortex, 20(5): 1053−1063. doi: 10.1093/cercor/bhp166
|
[4] |
Kwan BYM, Salehi F, Kope R, Lee DH, Sharma M, Hammond R, Burneo JG, Steven D, Peters T, Khan AR. 2017. Evaluation of ex-vivo 9.4 T MRI in post-surgical specimens from temporal lobe epilepsy patients. Journal of Neuroradiology, 44(6): 377−380. doi: 10.1016/j.neurad.2017.05.007
|
[5] |
Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. The Journal of Comparative Neurology, 403(2): 229−260. doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
|
[6] |
Pitkanen A, Amaral DG. 1998. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. The Journal of Comparative Neurology, 398(3): 431−458. doi: 10.1002/(SICI)1096-9861(19980831)398:3<431::AID-CNE9>3.0.CO;2-0
|
[7] |
Sah P, Faber ES, Lopez De Armentia M, Power J. 2003. The amygdaloid complex: anatomy and physiology. Physiological Reviews, 83(3): 803−834. doi: 10.1152/physrev.00002.2003
|
[8] |
Saleem KS, Logothetis NK. 2012. A Combined MRI and Histology Atlas of the Rhesus Monkey Brain in STereotaxic Coordinates. Amsterdam Boston: Academic Press.
|
[9] |
Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. The Journal of Comparative Neurology, 271(2): 185−207. doi: 10.1002/cne.902710203
|
[10] |
Sharp BM. 2017. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational Psychiatry, 7(8): e1194. doi: 10.1038/tp.2017.161
|
[11] |
Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP. 2008. Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(14): 3586−3594. doi: 10.1523/JNEUROSCI.5309-07.2008
|
[12] |
Sowell ER, Thompson PM, Peterson BS, Mattson SN, Welcome SE, Henkenius AL, Riley EP, Jernigan TL, Toga AW. 2002a. Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. NeuroImage, 17(4): 1807−1819. doi: 10.1006/nimg.2002.1328
|
[13] |
Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, Toga AW. 2002b. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cerebral Cortex, 12(1): 17−26. doi: 10.1093/cercor/12.1.17
|
[14] |
Yang Y, Wang JZ. 2017. From structure to behavior in basolateral amygdala-hippocampus circuits. Frontiers in Neural Circuits, 11: 86. doi: 10.3389/fncir.2017.00086
|