Volume 41 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Hong-Zhe Li, Nan Li, Jing-Jing Wang, Heng Li, Xing Huang, Lei Guo, Hui-Wen Zheng, Zhan-Long He, Yuan Zhao, Ze-Ning Yang, Hai-Tao Fan, Man-Man Chu, Jin-Xi Yang, Qiong-Wen Wu, Long-Ding Liu. Dysbiosis of gut microbiome affecting small intestine morphology and immune balance: a rhesus macaque model. Zoological Research, 2020, 41(1): 20-31. doi: 10.24272/j.issn.2095-8137.2020.004
Citation: Hong-Zhe Li, Nan Li, Jing-Jing Wang, Heng Li, Xing Huang, Lei Guo, Hui-Wen Zheng, Zhan-Long He, Yuan Zhao, Ze-Ning Yang, Hai-Tao Fan, Man-Man Chu, Jin-Xi Yang, Qiong-Wen Wu, Long-Ding Liu. Dysbiosis of gut microbiome affecting small intestine morphology and immune balance: a rhesus macaque model. Zoological Research, 2020, 41(1): 20-31. doi: 10.24272/j.issn.2095-8137.2020.004

Dysbiosis of gut microbiome affecting small intestine morphology and immune balance: a rhesus macaque model

doi: 10.24272/j.issn.2095-8137.2020.004
#Authors contributed equally to this work
Funds:  This work was supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2016-I2M-1-014)
More Information
  • Corresponding author: E-mail: longdingl@gmail.com
  • Received Date: 2019-07-10
  • Publish Date: 2020-01-01
  • There is a growing appreciation for the specific health benefits conferred by commensal microbiota on their hosts. Clinical microbiota analysis and animal studies in germ-free or antibiotic-treated mice have been crucial for improving our understanding of the role of the microbiome on the host mucosal surface; however, studies on the mechanisms involved in microbiome-host interactions remain limited to small animal models. Here, we demonstrated that rhesus monkeys under short-term broad-spectrum antibiotic treatment could be used as a model to study the gut mucosal host-microbiome niche and immune balance with steady health status. Results showed that the diversity and community structure of the gut commensal bacteria in rhesus monkeys were both disrupted after antibiotic treatment. Furthermore, the 16S rDNA amplicon sequencing results indicated that Escherichia-Shigella were predominant in stool samples 9 d of treatment, and the abundances of bacterial functional genes and predicted KEGG pathways were significantly changed. In addition to inducing aberrant morphology of small intestinal villi, the depletion of gut commensal bacteria led to increased proportions of CD3+ T, CD4+ T, and CD16+ NK cells in peripheral blood mononuclear cells (PBMCs), but decreased numbers of Treg and CD20+ B cells. The transcriptome of PBMCs from antibiotic-treated monkeys showed that the immune balance was affected by modulation of the expression of many functional genes, including IL-13, VCAM1, and LGR4.

  • #Authors contributed equally to this work
  • loading
  • [1]
    Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, Wherry EJ, Artis D. 2012. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity, 37(1): 158−170. doi: 10.1016/j.immuni.2012.04.011
    Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. 2018. The intestinal epithelium: Central coordinator of mucosal immunity. Trends in Immunology, 39(9): 677−696. doi: 10.1016/j.it.2018.04.002
    Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal, 7(7): 1344−1353. doi: 10.1038/ismej.2013.16
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Meta HITC, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. 2011. Enterotypes of the human gut microbiome. Nature, 473(7346): 174−180. doi: 10.1038/nature09944
    Baumgart DC, Dignass AU. 2002. Intestinal barrier function. Current Opinion in Clinical Nutrition and Metabolic Care, 5(6): 685−694. doi: 10.1097/00075197-200211000-00012
    Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell, 157(1): 121−141. doi: 10.1016/j.cell.2014.03.011
    Bhattacharyya S, Darby RR, Raibagkar P, Gonzalez Castro LN, Berkowitz AL. 2016. Antibiotic-associated encephalopathy. Neurology, 86(10): 963−971. doi: 10.1212/WNL.0000000000002455
    Cross ML, Ganner A, Teilab D, Fray LM. 2004. Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunology & Medical Microbiology, 42(2): 173−180.
    Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. 2017. The human microbiome in evolution. BMC Biology, 15(1): 127. doi: 10.1186/s12915-017-0454-7
    Desbonnet L, Clarke G, Traplin A, O'Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF. 2015. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain, Behavior, and Immunity, 48: 165−173. doi: 10.1016/j.bbi.2015.04.004
    Ferrer M, Martins dos Santos VA, Ott SJ, Moya A. 2014. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut Microbes, 5(1): 64−70. doi: 10.4161/gmic.27128
    Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, Levy M, Salame TM, Weiner A, David E, Shapiro H, Dori-Bachash M, Pevsner-Fischer M, Lorenzo-Vivas E, Keren-Shaul H, Paul F, Harmelin A, Eberl G, Itzkovitz S, Tanay A, Di Santo JP, Elinav E, Amit I. 2016. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell, 166(5): 1231−1246. doi: 10.1016/j.cell.2016.07.043
    Hooper LV, Gordon JI. 2001. Commensal host-bacterial relationships in the gut. Science, 292(5519): 1115−1118. doi: 10.1126/science.1058709
    Ivanov II, Honda K. 2012. Intestinal commensal microbes as immune modulators. Cell Host and Microbe, 12(4): 496−508. doi: 10.1016/j.chom.2012.09.009
    Kamada N, Chen GY, Inohara N, Núñez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14(7): 685−690. doi: 10.1038/ni.2608
    Karst SM. 2016. The influence of commensal bacteria on infection with enteric viruses. Nature Reviews Microbiology, 14(4): 197−204. doi: 10.1038/nrmicro.2015.25
    Kernbauer E, Ding Y, Cadwell K. 2014. An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516(7529): 94−98. doi: 10.1038/nature13960
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: An information aesthetic for comparative genomics. Genome Research, 19(9): 1639−1645. doi: 10.1101/gr.092759.109
    Langhorst J, Junge A, Rueffer A, Wehkamp J, Foell D, Michalsen A, Musial F, Dobos GJ. 2009. Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. The American Journal of Gastroenterology, 104(2): 404−410. doi: 10.1038/ajg.2008.86
    Lozupone C, Hamady M, Knight R. 2006. Unifrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 7(1): 371. doi: 10.1186/1471-2105-7-371
    Owens RC, Jr., Ambrose PG. 2005. Antimicrobial safety: Focus on fluoroquinolones. Clinical Infectious Diseases, 41(Suppl 2): S144−157.
    Postler TS, Ghosh S. 2017. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism, 26(1): 110−130. doi: 10.1016/j.cmet.2017.05.008
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1): D590−D596.
    Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Väisänen ML, Nelson MN, Wexler HM. 2000. Short-term benefit from oral vancomycin treatment of regressive-onset autism. Journal of Child Neurology, 15(7): 429−435. doi: 10.1177/088307380001500701
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09
    Schmidt TSB, Raes J, Bork P. 2018. The human gut microbiome: From association to modulation. Cell, 172(6): 1198−1215. doi: 10.1016/j.cell.2018.02.044
    Seyfizadeh N, Seyfizadeh N, Gharibi T, Babaloo Z. 2015. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiologica et Immunologica Hungarica, 62(4): 341−378. doi: 10.1556/030.62.2015.4.2
    Shapiro H, Thaiss CA, Levy M, Elinav E. 2014. The cross talk between microbiota and the immune system: Metabolites take center stage. Current Opinion in Immunology, 30: 54−62. doi: 10.1016/j.coi.2014.07.003
    Soderborg TK, Friedman JE. 2018. Imbalance in gut microbes from babies born to obese mothers increases gut permeability and myeloid cell adaptations that provoke obesity and NAFLD. Microbial Cell, 6(1): 102−104.
    Sprouse ML, Bates NA, Felix KM, Wu HJ. 2019. Impact of gut microbiota on gut-distal autoimmunity: A focus on t cells. Immunology, 156(4): 305−318. doi: 10.1111/imm.13037
    Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. 2005. Human airway epithelial cells produce ip-10(CXCL10) in vitro and in vivo upon rhinovirus infection. American Journal of Physiology-Lung Cellular and Molecular Physiology, 289(1): L85−L95. doi: 10.1152/ajplung.00397.2004
    Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, Jonasdottir A, Oddsson A, Helgason A, Magnusson OT, Walters GB, Frigge ML, Helgadottir HT, Johannsdottir H, Bergsteinsdottir K, Ogmundsdottir MH, Center JR, Nguyen TV, Eisman JA, Christiansen C, Steingrimsson E, Jonasson JG, Tryggvadottir L, Eyjolfsson GI, Theodors A, Jonsson T, Ingvarsson T, Olafsson I, Rafnar T, Kong A, Sigurdsson G, Masson G, Thorsteinsdottir U, Stefansson K. 2013. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature, 497(7450): 517−520. doi: 10.1038/nature12124
    Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P, Briseño CG, Theisen DJ, Tan Q, Hykes BL, Jr., Lin H, Lucas TM, Desai C, Gordon JI, Murphy KM, Virgin HW, Diamond MS. 2018. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Reports, 22(13): 3440−3453.e6. doi: 10.1016/j.celrep.2018.03.001
    Van den Bergh B, Michiels JE, Wenseleers T, Windels EM, Boer PV, Kestemont D, De Meester L, Verstrepen KJ, Verstraeten N, Fauvart M, Michiels J. 2016. Frequency of antibiotic application drives rapid evolutionary adaptation of escherichia coli persistence. Nature Microbiology, 1(9): 16020.
    Vandamme TF. 2015. Rodent models for human diseases. European Journal of Pharmacology, 759: 84−89. doi: 10.1016/j.ejphar.2015.03.046
    Wienhold SM, Macrì M, Nouailles G, Dietert K, Gurtner C, Gruber AD, Heimesaat MM, Lienau J, Schumacher F, Kleuser B, Opitz B, Suttorp N, Witzenrath M, Müller-Redetzky HC. 2018. Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice. Critical Care, 22(1): 282. doi: 10.1186/s13054-018-2213-8
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. 1998. Interleukin-13: Central mediator of allergic asthma. Science, 282(5397): 2258−2261. doi: 10.1126/science.282.5397.2258
    Wu S, Jiang ZY, Sun YF, Yu B, Chen J, Dai CQ, Wu XL, Tang XL, Chen XY. 2013. Microbiota regulates the TLR7 signaling pathway against respiratory tract influenza a virus infection. Current Microbiology, 67(4): 414−422. doi: 10.1007/s00284-013-0380-z
    Yang LY, Nossa CW, Pei ZH. 2015. Microbial dysbiosis and esophageal diseases. In: Highlander SK, Rodriguez-Valera F, White BA (eds). Encyclopedia of Metagenomics. Boston, MA: Springer, 379-384, https://doi.org/10.1007/978-1-4899-7475-4_65.
    Yeruva L, Spencer NE, Saraf MK, Hennings L, Bowlin AK, Cleves MA, Mercer K, Chintapalli SV, Shankar K, Rank RG, Badger TM, Ronis MJ. 2016. Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model. BMC Gastroenterology, 16: 40. doi: 10.1186/s12876-016-0456-x
    Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Farrokhi AS, Darabi N. 2019. Probiotics importance and their immunomodulatory properties. Journal of Cellular Physiology, 234(6): 8008−8018. doi: 10.1002/jcp.27559
  • ZoolRes-41-1-20-Supplementary Figures.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2358) PDF downloads(444) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint