2014 Vol. 35, No. 6

Display Method:
Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective countermeasures to better utilize NHP resources and further foster NHP research in China.
Pig-tailed macaques (Macaca nemistrina group) have been extensively used as non-human primate animal models for various human diseases in recent years, notably for AIDS research due to their sensitivity to HIV-1. Northern pig-tailed macaques (M. leonina) are distributed in China and other surrounding Southeast Asia countries. Although northern pig-tailed macaques have been bred on a large scale as experimental animals since 2012, the reference value of normal levels of leukocytes is not available. To obtain such information, 62 blood samples from male and female healthy northern pig-tailed macaques at different ages were collected. The normal range of major leukocyte subpopulations, such as T lymphocytes, B lymphocytes, natural killer (NK) cells, monocytes, and the expression levels of activation or differentiation related molecules (CD38, HLA-DR, CCR5, CD21, IgD, CD80 and CD86) on lymphocytes were analyzed by flow cytometry. The counts of B cells decreased with age, but those of CD8+ T cells and NK cells and the frequency of CD38+HLA-DR+CD4+ T cells were positively correlated with age. The counts of leukocyte subpopulations were higher in males than those in females except for CD4+ T cells. Males also showed higher expression levels of IgD and CD21 within B cells. This study provides basic data about the leukocyte subpopulations of northern pig-tailed macaques and compares this species with commonly used Chinese rhesus macaques (M. mulatta), which is meaningful for the biomedical application of northern pig-tailed macaques.
Seasonal variation in environmental factors is vital to the regulation of seasonal reproduction in primates. Consequently, long-term systematic data is necessary to clarify the birth seasonality and pattern of primates in highly seasonal environments. This study indicated that black-and-white snub-nosed monkeys (Rhinopithecus bieti) at Mt. Lasha exhibited strict birth seasonality with a pulse model. Infants were born with a certain degree of synchronization. Birth distribution showed three birth peaks, and the birth pattern showed a “V” style in even-numbered years and a gradual increase in odd-numbered years. The beginning date, end date and median birth date were earlier in even-numbered years than those in odd-numbered years. The higher latitude of their habitats, earlier birth date, shorter birth period, fewer birth peaks and stronger birth synchrony might be adaptations for strongly seasonal variation in climate and food resources. After the summer solstice when daylight length began to gradually shorten, R. bieti at Mt. Lasha started to breed during the period with the highest environmental temperature and food availability, which implied that photoperiod may be the proximate factor triggering the onset of estrus and mating. It appears that R. bieti coincided conception and mid-lactation with the peak in staple foods, and weaning with the peak in high quality of foods. Thus, food availability was the ultimate factor regulating reproductive seasonality, and photoperiod was the proximate factor fine-turning the coordination between seasonal breeding and food availability.
Coxsackie virus A16 (CA16) is commonly recognized as one of the main human pathogens of hand-foot-mouth disease (HFMD). The clinical manifestations of HFMD include vesicles of hand, foot and mouth in young children and severe inflammatory CNS lesions. In this study, experimentally CA16 infected tree shrews(Tupaia belangeri) were used to investigate CA16 pathogenesis. The results showed that both the body temperature and the percentages of blood neutrophilic granulocytes / monocytes of CA16 infected tree shrews increased at 4-7 days post infection. Dynamic distributions of CA16 in different tissues and stools were found at different infection stages. Moreover, the pathological changes in CNS and other organs were also observed. These findings indicate that tree shrews can be used as a viable animal model to study CA16 infection.
Endosymbionts influence many aspects of their hosts' health conditions, including physiology, development, immunity, metabolism, etc. Tree shrews (Tupaia belangeri chinensis) have attracted increasing attention in modeling human diseases and therapeutic responses due to their close relationship with primates. To clarify the situation of symbiotic bacteria from their body surface, oral cavity, and anus, 12 wild and 12 the third generation of captive tree shrews were examined. Based on morphological and cultural characteristics, physiological and biochemical tests, as well as the 16S rDNA full sequence analysis, 12 bacteria strains were isolated and identified from the wild tree shrews: body surface: Bacillus subtilis (detection rate 42%), Pseudomonas aeruginosa (25%), Staphlococcus aureus (33%), S. Epidermidis (75%), Micrococcus luteus (25%), Kurthia gibsonii (17%); oral cavity: Neisseria mucosa (58%), Streptococcus pneumonia (17%); anus: Enterococcus faecalis (17%), Lactococus lactis (33%), Escherichia coli (92%), Salmonella typhosa (17%); whereas, four were indentified from the third generation captive tree shrews: body surface: S. epidermidis (75%); oral cavity: N.mucosa (67%); anus: L. lactis (33%), E. coli (100%). These results indicate that S. epidermidis, N. mucosa, L. lactis and E. coli were major bacteria in tree shrews, whereas, S. aureus, M. luteus, K. gibsonii, E. faecalis and S. typhosa were species-specific flora. This study facilitates the future use of tree shrews as a standard experimental animal and improves our understanding of the relationship between endosymbionts and their hosts.
Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization.
Viviparidae are widely distributed around the globe, but there are considerable gaps in the taxonomic record. To date, 18 species of the viviparid genus Cipangopaludina have been recorded in China, but there is substantial disagreement on the validity of this taxonomy. In this study, we described the shell and internal traits of these species to better discuss the validity of related species. We found that C. ampulliformis is synonym of C. lecythis, and C. wingatei is synonym of C. chinensis,while C. ampullacea and C. fluminalis are subspecies of C. lecythis and C. chinensis, respectively. C. dianchiensis should be paled in the genus Margarya, while C. menglaensis and C. yunnanensisbelong to genus Mekongia. Totally, this leaves 11 species and 2 subspecies recorded in China. Based on whether these specimens' spiral whorl depth was longer than aperture depth, these species or subspecies can be further divided into two groups, viz. chinensis group and cathayensis group, which can be determined from one another via the ratio of spiral depth and aperture depth, vas deferens and number of secondary branches of vas deferens. Additionally, Principal Component Analysis indicated that body whorl depth, shell width, aperture width and aperture length were main variables during species of Cipangopaludina. A key to all valid Chinese Cipangopaludina specieswere given.
Cervus sichuanicus is a species of sika deer (Cervus nippon Group). To date, research has mainly focused on quantity surveying and behavior studies, with genetic information on this species currently deficient. To provide scientific evidence to assist in the protection of this species, we collected Sichuan sika deer fecal samples from the Sichuan Tiebu Nature Reserve (TNR) and extracted DNA from those samples. Microsatellite loci of bovine were used for PCR amplification. After GeneScan, the genotype data were used to analyze the genetic diversity and population structure of the Sichuan sika deer in TNR. Results showed that the average expected heterozygosity of the Sichuan sika deer population in TNR was 0.562, equivalent to the average expected heterozygosity of endangered animals, such as Procapra przewalskii. Furthermore, 8 of 9 microsatellite loci significantly deviated from the Hardy-Weinberg equilibrium and two groups existed within the Sichuan sika deer TNR population. This genetic structure may be caused by a group of Manchurian sika deer (Cervus hortulorum) released in TNR.
The yellow meal worm (Tenebrio molitor L.) is an important resource insect typically used as animal feed additive. It is also widely used for biological research. The first complete mitochondrial genome of T. molitor was determined for the first time by long PCR and conserved primer walking approaches. The results showed that the entire mitogenome of T. molitor was 15 785 bp long, with 72.35% A+T content [deposited in GenBank with accession number KF418153]. The gene order and orientation were the same as the most common type suggested as ancestral for insects. Two protein-coding genes used atypical start codons (CTA in ND2 and AAT in COX1), and the remaining 11 protein-coding genes started with a typical insect initiation codon ATN. All tRNAs showed standard clover-leaf structure, except for tRNASer (AGN), which lacked a dihydrouridine (DHU) arm. The newly added T. molitor mitogenome could provide information for future studies on yellow meal worm.