Turn off MathJax
Article Contents
Hai-Yang Wang, Lan-Xiang Liu, Xue-Yi Chen, Yang-Dong Zhang, Wen-Xia Li, Wen-Wen Li, Lian Wang, Xiao-Long Mo, Hong Wei, Ping Ji, Peng Xie. Comprehensive analysis of the gut microbiome and post-translational modifications elucidates the route involved in microbiota-host interactions. Zoological Research, 2024, 45(1): 95-107. doi: 10.24272/j.issn.2095-8137.2023.008
Citation: Hai-Yang Wang, Lan-Xiang Liu, Xue-Yi Chen, Yang-Dong Zhang, Wen-Xia Li, Wen-Wen Li, Lian Wang, Xiao-Long Mo, Hong Wei, Ping Ji, Peng Xie. Comprehensive analysis of the gut microbiome and post-translational modifications elucidates the route involved in microbiota-host interactions. Zoological Research, 2024, 45(1): 95-107. doi: 10.24272/j.issn.2095-8137.2023.008

Comprehensive analysis of the gut microbiome and post-translational modifications elucidates the route involved in microbiota-host interactions

doi: 10.24272/j.issn.2095-8137.2023.008
The raw metagenomics sequencing reads can be downloaded from the NCBI (PRJNA1003305), China National Center for Bioinformation (PRJCA018916), and Science Data Bank databases (DOI: 10.57760/sciencedb.j00139.00058).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
H.W., P.J., and P.X. conceived and designed the study, H.Y.W. and L.X.L. wrote the manuscript, X.Y.C. and Y.D.Z. analyzed the data, W.W.L., W.X.L., L.W., and X.L.M. revised the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the Natural Science Foundation Project of China (81820108015, 82201683), China Postdoctoral Science Foundation (2021M693926, 2020TQ0393, 2020M683634XB), Chongqing Science & Technology Commission (cstc2021jcyj-bshX0150, cstc2021jcyj-bshX0201), and Special Funding for Chongqing Postdoctoral Research Projects (2021XMT001)
More Information
  • The gut microbiome interacts with the host to maintain body homeostasis, with gut microbial dysbiosis implicated in many diseases. However, the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear. This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation. We conducted succinylome analysis of hippocampal proteins in germ-free (GF) and specific pathogen-free (SPF) mice and metagenomic analysis of feces from SPF mice. These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice. Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins, including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice. We constructed a panoramic map of gut microbiota-regulated succinylation, acetylation, and phosphorylation, and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways. Pearson correlation analysis indicated that 13 taxa, predominantly belonging to the Bacteroidetes phylum, were correlated with the biological functions of post-translational modifications. Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways. This study highlights the hippocampal physiological changes induced by the absence of gut microbiota, and proteomic quantification of succinylation, phosphorylation, and acetylation, contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.
  • The raw metagenomics sequencing reads can be downloaded from the NCBI (PRJNA1003305), China National Center for Bioinformation (PRJCA018916), and Science Data Bank databases (DOI: 10.57760/sciencedb.j00139.00058).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    H.W., P.J., and P.X. conceived and designed the study, H.Y.W. and L.X.L. wrote the manuscript, X.Y.C. and Y.D.Z. analyzed the data, W.W.L., W.X.L., L.W., and X.L.M. revised the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Bettaieb A, Bakke J, Nagata N, et al. 2013. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. Journal of Biological Chemistry, 288(24): 17360−17371. doi: 10.1074/jbc.M112.441469
    [2]
    Chen CL, Chen JF, Rawale S, et al. 2008. Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. Journal of Biological Chemistry, 283(41): 27991−28003. doi: 10.1074/jbc.M802691200
    [3]
    Chen HL, Xu H, Potash S, et al. 2017a. Mild metabolic perturbations alter succinylation of mitochondrial proteins. Journal of Neuroscience Research, 95(11): 2244−2252. doi: 10.1002/jnr.24103
    [4]
    Chen JJ, Xie J, Zeng BH, et al. 2019. Absence of gut microbiota affects lipid metabolism in the prefrontal cortex of mice. Neurological Research, 41(12): 1104−1112. doi: 10.1080/01616412.2019.1675021
    [5]
    Chen JJ, Zeng BH, Li WW, et al. 2017b. Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behavioural Brain Research, 322: 34−41. doi: 10.1016/j.bbr.2017.01.021
    [6]
    Cryan JF, Dinan TG. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10): 701−712. doi: 10.1038/nrn3346
    [7]
    Cryan JF, O'Riordan KJ, Cowan CSM, et al. 2019. The microbiota-gut-brain axis. Physiological Reviews, 99(4): 1877−2013. doi: 10.1152/physrev.00018.2018
    [8]
    Dayama G, Priya S, Niccum DE, et al. 2020. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Medicine, 12(1): 12. doi: 10.1186/s13073-020-0710-2
    [9]
    Duman RS, Sanacora G, Krystal JH. 2019. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 102(1): 75−90. doi: 10.1016/j.neuron.2019.03.013
    [10]
    Durrant MG, Bhatt AS. 2019. Microbiome genome structure drives function. Nature Microbiology, 4(6): 912−913. doi: 10.1038/s41564-019-0473-y
    [11]
    Ebert T, Tran N, Schurgers L, et al. 2022. Ageing - Oxidative stress, PTMs and disease. Molecular Aspects of Medicine, 86: 101099. doi: 10.1016/j.mam.2022.101099
    [12]
    Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1): 55−71. doi: 10.1038/s41579-020-0433-9
    [13]
    Fang XP, Xin Y, Sheng ZL, et al. 2018. Systematic identification and analysis of lysine succinylation in strawberry stigmata. Journal of Agricultural and Food Chemistry, 66(50): 13310−13320. doi: 10.1021/acs.jafc.8b02708
    [14]
    Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5): 305−312. doi: 10.1016/j.tins.2013.01.005
    [15]
    Fung TC, Olson CA, Hsiao EY. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2): 145−155. doi: 10.1038/nn.4476
    [16]
    Gao Y, Lee H, Kwon OK, et al. 2019. Global proteomic analysis of lysine succinylation in zebrafish (Danio rerio). Journal of Proteome Research, 18(10): 3762−3769. doi: 10.1021/acs.jproteome.9b00462
    [17]
    Gareau MG, Wine E, Rodrigues DM, et al. 2011. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 60(3): 307−317. doi: 10.1136/gut.2009.202515
    [18]
    Guo RY, Zong S, Wu M, et al. 2017. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell, 170(6): 1247−1257.e12. doi: 10.1016/j.cell.2017.07.050
    [19]
    Hall CN, Klein-Flugge MC, Howarth C, et al. 2012. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. Journal of Neuroscience, 32(26): 8940−8951. doi: 10.1523/JNEUROSCI.0026-12.2012
    [20]
    Humphrey SJ, James DE, Mann M. 2015. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends in Endocrinology & Metabolism, 26(12): 676−687.
    [21]
    Johnson EL, Heaver SL, Walters WA, et al. 2017. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 95(1): 1−8.
    [22]
    Klausen MS, Jespersen MC, Nielsen H, et al. 2019. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins, 87(6): 520−527. doi: 10.1002/prot.25674
    [23]
    Koopman WJH, Distelmaier F, Smeitink JAM, et al. 2013. OXPHOS mutations and neurodegeneration. The EMBO Journal, 32(1): 9−29.
    [24]
    Krug K, Mertins P, Zhang B, et al. 2019. A curated resource for phosphosite-specific signature analysis. Molecular & Cellular Proteomics, 18(3): 576−593.
    [25]
    Lai YJ, Liu CW, Yang YF, et al. 2021. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nature Communications, 12(1): 6000. doi: 10.1038/s41467-021-26209-8
    [26]
    Li B, Guo KN, Zeng L, et al. 2018a. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Translational Psychiatry, 8(1): 34. doi: 10.1038/s41398-017-0078-2
    [27]
    Li QR, Cao LJ, Tian Y, et al. 2018b. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Molecular & Cellular Proteomics, 17(8): 1531−1545.
    [28]
    Liu LX, Wang HY, Rao XC, et al. 2021. Comprehensive analysis of the lysine acetylome and succinylome in the hippocampus of gut microbiota-dysbiosis mice. Journal of Advanced Research, 30: 27−38. doi: 10.1016/j.jare.2020.12.002
    [29]
    Liu LX, Wang HY, Yu Y, et al. 2020. Microbial regulation of a lincRNA-miRNA-mRNA network in the mouse hippocampus. Epigenomics, 12(16): 1377−1387. doi: 10.2217/epi-2019-0307
    [30]
    Long-Smith C, O'Riordan KJ, Clarke G, et al. 2020. Microbiota-gut-brain axis: new therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 60: 477−502. doi: 10.1146/annurev-pharmtox-010919-023628
    [31]
    Luczynski P, McVey Neufeld KA, Oriach CS, et al. 2016. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology, 19(8): pyw020. doi: 10.1093/ijnp/pyw020
    [32]
    Lukić I, Getselter D, Ziv O, et al. 2019. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 9(1): 133. doi: 10.1038/s41398-019-0466-x
    [33]
    Lv L, Li D, Zhao D, et al. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell, 42(6): 719−730. doi: 10.1016/j.molcel.2011.04.025
    [34]
    Marcelino VR, Clausen PTLC, Buchmann JP, et al. 2020. CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology, 21(1): 103. doi: 10.1186/s13059-020-02014-2
    [35]
    Mittal R, Debs LH, Patel AP, et al. 2017. Neurotransmitters: the critical modulators regulating gut-brain axis. Journal of Cellular Physiology, 232(9): 2359−2372. doi: 10.1002/jcp.25518
    [36]
    Miyauchi E, Kim SW, Suda W, et al. 2020. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature, 585(7823): 102−106. doi: 10.1038/s41586-020-2634-9
    [37]
    Morais LH, Schreiber IV HL, Mazmanian SK. 2021. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4): 241−255. doi: 10.1038/s41579-020-00460-0
    [38]
    Narita T, Weinert BT, Choudhary C. 2019. Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 20(3): 156−174. doi: 10.1038/s41580-018-0081-3
    [39]
    Osadchiy V, Martin CR, Mayer EA. 2019. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clinical Gastroenterology and Hepatology, 17(2): 322−332. doi: 10.1016/j.cgh.2018.10.002
    [40]
    Parker A, Romano S, Ansorge R, et al. 2022. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome, 10(1): 68. doi: 10.1186/s40168-022-01243-w
    [41]
    Pieroni L, Iavarone F, Olianas A, et al. 2020. Enrichments of post-translational modifications in proteomic studies. Journal of Separation Science, 43(1): 313−336. doi: 10.1002/jssc.201900804
    [42]
    Qi XZ, Zhong XG, Xu SH, et al. 2020. Extracellular matrix and oxidative phosphorylation: important role in the regulation of hypothalamic function by gut microbiota. Frontiers in genetics, 11: 520. doi: 10.3389/fgene.2020.00520
    [43]
    Qin JJ, Li RQ, Raes J, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59−65. doi: 10.1038/nature08821
    [44]
    Rahman M, Nirala NK, Singh A, et al. 2014. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. Journal of Cell Biology, 206(2): 289−305. doi: 10.1083/jcb.201404118
    [45]
    Rao XC, Liu LX, Wang HY, et al. 2021. Regulation of gut microbiota disrupts the glucocorticoid receptor pathway and inflammation-related pathways in the mouse hippocampus. Experimental Neurobiology, 30(1): 59−72. doi: 10.5607/en20055
    [46]
    Schoch SF, Castro-Mejía JL, Krych L, et al. 2022. From Alpha Diversity to Zzz: interactions among sleep, the brain, and gut microbiota in the first year of life. Progress in Neurobiology, 209: 102208. doi: 10.1016/j.pneurobio.2021.102208
    [47]
    Schretter CE. 2020. Links between the gut microbiota, metabolism, and host behavior. Gut Microbes, 11(2): 245−248. doi: 10.1080/19490976.2019.1643674
    [48]
    Snyder SH, Ferris CD. 2000. Novel neurotransmitters and their neuropsychiatric relevance. American Journal of Psychiatry, 157(11): 1738−1751. doi: 10.1176/appi.ajp.157.11.1738
    [49]
    Sun S, Luo LJ, Liang WH, et al. 2020. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 117(44): 27509−27515.
    [50]
    The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486(7402): 207−214. doi: 10.1038/nature11234
    [51]
    Vassilopoulos A, Pennington JD, Andresson T, et al. 2014. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxidants & Redox Signaling, 21(4): 551−564.
    [52]
    Vuong HE, Pronovost GN, Williams DW, et al. 2020. The maternal microbiome modulates fetal neurodevelopment in mice. Nature, 586(7828): 281−286. doi: 10.1038/s41586-020-2745-3
    [53]
    Wang DM, Doestzada M, Chen LM, et al. 2021. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host & Microbe, 29(12): 1802−1814.e5.
    [54]
    Wang F, Wang K, Xu W, et al. 2017. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Reports, 19(11): 2331−2344. doi: 10.1016/j.celrep.2017.05.065
    [55]
    Wang HY, Liu LX, Rao XC, et al. 2020a. Commensal microbiota regulation of metabolic networks during olfactory dysfunction in mice. Neuropsychiatric Disease and Treatment, 16: 761−769. doi: 10.2147/NDT.S236541
    [56]
    Wang HY, Liu LX, Rao XC, et al. 2020b. Integrated phosphoproteomic and metabolomic profiling reveals perturbed pathways in the hippocampus of gut microbiota dysbiosis mice. Translational Psychiatry, 10(1): 346. doi: 10.1038/s41398-020-01024-9
    [57]
    Wang XB, Chen XZ, Li JR, et al. 2019. Global analysis of lysine succinylation in patchouli plant leaves. Horticulture Research, 6: 133. doi: 10.1038/s41438-019-0216-5
    [58]
    Wei MY, Shi S, Liang C, et al. 2019. The microbiota and microbiome in pancreatic cancer: more influential than expected. Molecular Cancer, 18(1): 97. doi: 10.1186/s12943-019-1008-0
    [59]
    Wu ZF, Lin DY, Li YL. 2022. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nature Reviews Neuroscience, 23(5): 257−274. doi: 10.1038/s41583-022-00577-6
    [60]
    Yang WW, Zheng YH, Xia Y, et al. 2012. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nature Cell Biology, 14(12): 1295−1304. doi: 10.1038/ncb2629
    [61]
    Yang YP, Lu Y, Yu PJ, et al. 2022. Characterization of gut microbial alterations in cynomolgus macaques during growth and maturation. Zoological Research, 43(2): 176−179. doi: 10.24272/j.issn.2095-8137.2021.304
    [62]
    Yao ZY, Li XH, Zuo L, et al. 2022. Maternal sleep deprivation induces gut microbial dysbiosis and neuroinflammation in offspring rats. Zoological Research, 43(3): 380−390. doi: 10.24272/j.issn.2095-8137.2022.023
    [63]
    Yu Y, Wang HY, Rao XC, et al. 2021. Proteomic profiling of lysine acetylation indicates mitochondrial dysfunction in the hippocampus of gut microbiota-absent mice. Frontiers in Molecular Neuroscience, 14: 594332. doi: 10.3389/fnmol.2021.594332
    [64]
    Zeevi D, Korem T, Godneva A, et al. 2019. Structural variation in the gut microbiome associates with host health. Nature, 568(7750): 43−48. doi: 10.1038/s41586-019-1065-y
    [65]
    Zeng L, Zeng BH, Wang HY, et al. 2016. Microbiota modulates behavior and protein kinase C mediated cAMP response element-binding protein Signaling. Scientific Reports, 6: 29998. doi: 10.1038/srep29998
    [66]
    Zheng P, Wu J, Zhang HP, et al. 2021. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Molecular Psychiatry, 26(6): 2380−2392. doi: 10.1038/s41380-020-0744-2
    [67]
    Zheng P, Zeng B, Zhou C, et al. 2016. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Molecular Psychiatry, 21(6): 786−796. doi: 10.1038/mp.2016.44
    [68]
    Zheng P, Zeng BH, Liu ML, et al. 2019. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2): eaau8317. doi: 10.1126/sciadv.aau8317
    [69]
    Zhou CJ, Rao XC, Wang HY, et al. 2020. Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice. Functional & Integrative Genomics, 20(3): 355−365.
    [70]
    Zhu GJ, Jin LF, Sun WC, et al. 2022. Proteomics of post-translational modifications in colorectal cancer: discovery of new biomarkers. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(4): 188735.
  • ZR-2023-008-Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (152) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return