Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Mao-Sen Ye, Jin-Yan Zhang, Dan-Dan Yu, Min Xu, Ling Xu, Long-Bao Lv, Qi-Yun Zhu, Yu Fan, Yong-Gang Yao. Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zoological Research, 2021, 42(6): 692-709. doi: 10.24272/j.issn.2095-8137.2021.272
Citation: Mao-Sen Ye, Jin-Yan Zhang, Dan-Dan Yu, Min Xu, Ling Xu, Long-Bao Lv, Qi-Yun Zhu, Yu Fan, Yong-Gang Yao. Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zoological Research, 2021, 42(6): 692-709. doi: 10.24272/j.issn.2095-8137.2021.272

Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing

doi: 10.24272/j.issn.2095-8137.2021.272
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (U1902215 to Y.G.Y. and 31970542 to Y.F.), Chinese Academy of Sciences (Light of West China Program xbzg-zdsys-201909 to Y.G.Y.), and Yunnan Province (202001AS070023 and 2018FB046 to D.D.Y. and 202002AA100007 to Y.G.Y.)
More Information
  • Corresponding author: E-mail: yaoyg@mail.kiz.ac.cn
  • Received Date: 2021-09-02
  • Accepted Date: 2021-09-23
  • Available Online: 2021-09-26
  • Publish Date: 2021-11-18
  • The Chinese tree shrew (Tupaia belangeri chinensis) is emerging as an important experimental animal in multiple fields of biomedical research. Comprehensive reference genome annotation for both mRNA and long non-coding RNA (lncRNA) is crucial for developing animal models using this species. In the current study, we collected a total of 234 high-quality RNA sequencing (RNA-seq) datasets and two long-read isoform sequencing (ISO-seq) datasets and improved the annotation of our previously assembled high-quality chromosome-level tree shrew genome. We obtained a total of 3 514 newly annotated coding genes and 50 576 lncRNA genes. We also characterized the tissue-specific expression patterns and alternative splicing patterns of mRNAs and lncRNAs and mapped the orthologous relationships among 11 mammalian species using the current annotated genome. We identified 144 tree shrew-specific gene families, including interleukin 6 (IL6) and STT3 oligosaccharyltransferase complex catalytic subunit B (STT3B), which underwent significant changes in size. Comparison of the overall expression patterns in tissues and pathways across four species (human, rhesus monkey, tree shrew, and mouse) indicated that tree shrews are more similar to primates than to mice at the tissue-transcriptome level. Notably, the newly annotated purine rich element binding protein A (PURA) gene and the STT3B gene family showed dysregulation upon viral infection. The updated version of the tree shrew genome annotation (KIZ version 3: TS_3.0) is available at http://www.treeshrewdb.org and provides an essential reference for basic and biomedical studies using tree shrew animal models.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Amako Y, Tsukiyama-Kohara K, Katsume A, Hirata Y, Sekiguchi S, Tobita Y, et al. 2010. Pathogenesis of hepatitis C virus infection in Tupaia belangeri. Journal of Virology, 84(1): 303–311.
    [2]
    Baralle FE, Giudice J. 2017. Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 18(7): 437−451.
    [3]
    Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, et al. 2019. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics, 20(1): 344.
    [4]
    Bennett AJ, Panicker S. 2016. Broader impacts: international implications and integrative ethical consideration of policy decisions about US chimpanzee research. American Journal of Primatology, 78(12): 1282−1303.
    [5]
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120.
    [6]
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. 2007. UniProtKB/Swiss-Prot. Methods in Molecular Biology, 406: 89−112.
    [7]
    Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5): 525−527.
    [8]
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36(5): 411−420.
    [9]
    Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen CY, Shao Y, et al. 2019. Gene expression across mammalian organ development. Nature, 571(7766): 505−509.
    [10]
    Chen G, Shi TL, Shi LM. 2017. Characterizing and annotating the genome using RNA-seq data. Science China Life Sciences, 60(2): 116−125.
    [11]
    Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. 2019. Long non-coding RNA: classification, biogenesis and functions in blood cells. Molecular Immunology, 112: 82−92.
    [12]
    Daniel DC, Johnson EM. 2018. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene, 643: 133−143.
    [13]
    Das A, Dinh PX, Panda D, Pattnaik AK. 2014. Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. Journal of Virology, 88(6): 3103−3113.
    [14]
    De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 22(10): 1269−1271.
    [15]
    Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, et al. 2021. Aspects of tree shrew consolidated sleep structure resemble human sleep. Communications Biology, 4(1): 722.
    [16]
    Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, et al. 2014. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Molecular Human Reproduction, 20(6): 476−488.
    [17]
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15−21.
    [18]
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1): D427−D432.
    [19]
    Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1): 238.
    [20]
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426.
    [21]
    Fan Y, Luo RC, Su LY, Xiang Q, Yu DD, Xu L, et al. 2018. Does the genetic feature of the Chinese tree shrew (Tupaia belangeri chinensis) support its potential as a viable model for Alzheimer's disease research?. Journal of Alzheimer's Disease, 61(3): 1015−1028.
    [22]
    Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521.
    [23]
    Fan Y, Yu DD, Yao YG. 2014. Tree shrew database (TreeshrewDB): a genomic knowledge base for the Chinese tree shrew. Scientific Reports, 4: 7145.
    [24]
    Fitzpatrick D. 1996. The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cerebral Cortex, 6(3): 329−341.
    [25]
    Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, et al. 2019. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology, 17(1): 108.
    [26]
    Fu BQ, Xu XL, Wei HM. 2020. Why tocilizumab could be an effective treatment for severe COVID-19?. Journal of Translational Medicine, 18(1): 164.
    [27]
    Garber M, Grabherr MG, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6): 469−477.
    [28]
    Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, et al. 2016. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. International Journal of Cancer, 138(3): 642−651.
    [29]
    Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, et al. 2016. Long-read sequence assembly of the gorilla genome. Science, 352(6281): aae0344.
    [30]
    Gounder AP, Yokoyama CC, Jarjour NN, Bricker TL, Edelson BT, Boon ACM. 2018. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathogens, 14(4): e1007001.
    [31]
    Gu TL, Yu DD, Fan Y, Wu Y, Yao YL, Xu L, et al. 2019a. Molecular identification and antiviral function of the guanylate-binding protein (GBP) genes in the Chinese tree shrew (Tupaia belangeri chinesis). Developmental & Comparative Immunology, 96: 27−36.
    [32]
    Gu TL, Yu DD, Li Y, Xu L, Yao YL, Yao YG. 2019b. Establishment and characterization of an immortalized renal cell line of the Chinese tree shrew (Tupaia belangeri chinesis). Applied Microbiology and Biotechnology, 103(5): 2171−2180.
    [33]
    Gu TL, Yu DD, Xu L, Yao YL, Zheng X, Yao YG. 2021. Tupaia guanylate-binding protein 1 interacts with vesicular stomatitis virus phosphoprotein and represses primary transcription of the viral genome. Cytokine, 138: 155388.
    [34]
    Han YY, Wang WG, Jia J, Sun XM, Kuang DX, Tong PF, et al. 2020. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. Experimental Biology and Medicine, 245(11): 945−955.
    [35]
    He L, Frost MR, Siegwart JT Jr, Norton TT. 2014. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Experimental Eye Research, 123: 56−71.
    [36]
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Molecular Biology and Evolution, 34(8): 2115−2122.
    [37]
    Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 47(3): 199−208.
    [38]
    Ji XJ, Li P, Fuscoe JC, Chen G, Xiao WZ, Shi LM, et al. 2020. A comprehensive rat transcriptome built from large scale RNA-seq-based annotation. Nucleic Acids Research, 48(15): 8320−8331.
    [39]
    Jiang S, Cheng SJ, Ren LC, Wang Q, Kang YJ, Ding Y, et al. 2019. An expanded landscape of human long noncoding RNA. Nucleic Acids Research, 47(15): 7842−7856.
    [40]
    Jones SA, Hunter CA. 2021. Is IL-6 a key cytokine target for therapy in COVID-19?. Nature Reviews Immunology, 21(6): 337−339.
    [41]
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1): D353−D361.
    [42]
    Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei LP, et al. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45(W1): W12−W16.
    [43]
    Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei LP, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 35(W1): W345−W349.
    [44]
    Krachmarov CP, Chepenik LG, Barr-Vagell S, Khalili K, Johnson EM. 1996. Activation of the JC virus Tat-responsive transcriptional control element by association of the Tat protein of human immunodeficiency virus 1 with cellular protein Purα. Proceedings of the National Academy of Sciences of the United States of America, 93(24): 14112−14117.
    [45]
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547−1549.
    [46]
    Lee KS, Huang XY, Fitzpatrick D. 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601): 90−94.
    [47]
    Levy AM, Fazio MA, Grytz R. 2018. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera. Ophthalmic and Physiological Optics, 38(3): 246−256.
    [48]
    Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2): 241−252.
    [49]
    Li RF, Yuan B, Xia XS, Zhang S, Du QL, Yang CG, et al. 2018. Tree shrew as a new animal model to study the pathogenesis of avian influenza (H9N2) virus infection. Emerging Microbes & Infections, 7(1): 166.
    [50]
    Lin DL, Cherepanova NA, Bozzacco L, MacDonald MR, Gilmore R, Tai AW. 2017. Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. mBio, 8(4): e00939−e00917.
    [51]
    Lin JN, Chen GF, Gu L, Shen YF, Zheng MZ, Zheng WS, et al. 2014. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate. Molecular Phylogenetics and Evolution, 71: 193−200.
    [52]
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550.
    [53]
    Lu H, Cherepanova NA, Gilmore R, Contessa JN, Lehrman MA. 2019. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction. The FASEB Journal, 33(6): 6801−6812.
    [54]
    Lu T, Peng HM, Zhong LP, Wu P, He J, Deng ZM, et al. 2021. The tree shrew as a model for cancer research. Frontiers in Oncology, 11: 653236.
    [55]
    Luo MT, Fan Y, Mu D, Yao YG, Zheng YT. 2018. Molecular cloning and characterization of APOBEC3 family in tree shrew. Gene, 646: 143−152.
    [56]
    McGonigle P, Ruggeri B. 2014. Animal models of human disease: challenges in enabling translation. Biochemical Pharmacology, 87(1): 162−171.
    [57]
    McInnes L, Healy J, Melville J. 2020. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv: 1802.03426.
    [58]
    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229): 1033−1034.
    [59]
    Melé M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL. 2017. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Research, 27(1): 27−37.
    [60]
    Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics: btaa1022
    [61]
    Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. 2018. The tree shrew cerebellum atlas: systematic nomenclature, neurochemical characterization, and afferent projections. Journal of Comparative Neurology, 526(17): 2744−2775.
    [62]
    Nudelman G, Frasca A, Kent B, Sadler KC, Sealfon SC, Walsh MJ, et al. 2018. High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Research, 28(9): 1415−1425.
    [63]
    Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell, 143(1): 46−58.
    [64]
    Page RD. 1998. GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics, 14(9): 819−820.
    [65]
    Pertea G, Pertea M. 2020. GFF utilities: GffRead and GffCompare. F1000Research, 9: 304.
    [66]
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290−295.
    [67]
    Petry HM, Bickford ME. 2019. The second visual system of the tree shrew. Journal of Comparative Neurology, 527(3): 679−693.
    [68]
    Phillips JR, Khalaj M, McBrien NA. 2000. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Investigative Ophthalmology & Visual Science, 41(8): 2028−2034.
    [69]
    Ponjavic J, Oliver PL, Lunter G, Ponting CP. 2009. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genetics, 5(8): e1000617.
    [70]
    Purugganan MD, Jackson SA. 2021. Advancing crop genomics from lab to field. Nature Genetics, 53(5): 595−601.
    [71]
    Quinn JJ, Chang HY. 2016. Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17(1): 47−62.
    [72]
    Robinson NB, Krieger K, Khan FM, Huffman W, Chang M, Naik A, et al. 2019. The current state of animal models in research: a review. International Journal of Surgery, 72: 9−13.
    [73]
    Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. 2020. An analysis of tissue-specific alternative splicing at the protein level. PLoS Computational Biology, 16(10): e1008287.
    [74]
    Rose-John S. 2018. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology, 10(2): a028415.
    [75]
    Salmela L, Rivals E. 2014. LoRDEC: accurate and efficient long read error correction. Bioinformatics, 30(24): 3506−3514.
    [76]
    Sanada T, Tsukiyama-Kohara K, Shin IT, Yamamoto N, Kayesh MEH, Yamane D, et al. 2019. Construction of complete Tupaia belangeri transcriptome database by whole-genome and comprehensive RNA sequencing. Scientific Reports, 9(1): 12372.
    [77]
    Savier E, Sedigh-Sarvestani M, Wimmer R, Fitzpatrick D. 2021. A bright future for the tree shrew in neuroscience research: summary from the inaugural Tree Shrew Users Meeting. Zoological Research, 42(4): 478−481.
    [78]
    Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation completeness. Methods in Molecular Biology, 1962: 227−245.
    [79]
    Sharon D, Tilgner H, Grubert F, Snyder M. 2013. A single-molecule long-read survey of the human transcriptome. Nature Biotechnology, 31(11): 1009−1014.
    [80]
    Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3210−3212.
    [81]
    Stark R, Grzelak M, Hadfield J. 2019. RNA sequencing: the teenage years. Nature Reviews Genetics, 20(11): 631−656.
    [82]
    Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, et al. 2018. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biology, 19(1): 40.
    [83]
    Tu Q, Yang D, Zhang XN, Jia XT, An SQ, Yan LZ, et al. 2019. A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal. Disease Models & Mechanisms, 12(4): dmm038703.
    [84]
    Ule J, Blencowe BJ. 2019. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Molecular Cell, 76(2): 329−345.
    [85]
    Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. 2020. Immunology of COVID-19: current state of the science. Immunity, 52(6): 910−941.
    [86]
    Wang GL, Park HJ, Dasari S, Wang SQ, Kocher JP, Li W. 2013. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41(6): e74.
    [87]
    Wang K, Wang DH, Zheng XM, Qin A, Zhou J, Guo BY, et al. 2019. Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nature Communications, 10(1): 4714.
    [88]
    Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35(3): 543−548.
    [89]
    Wei S, Hua HR, Chen QQ, Zhang Y, Chen F, Li SQ, et al. 2017. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 38(2): 96−102.
    [90]
    Wortman MJ, Hanson LK, Martínez-Sobrido L, Campbell AE, Nance JA, García-Sastre A, et al. 2010. Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals. BMC Molecular Biology, 11: 81.
    [91]
    Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. 2016a. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods in Molecular Biology, 1418: 283−334.
    [92]
    Wu XY, Xu HB, Zhang ZG, Chang Q, Liao SS, Zhang LQ, et al. 2016b. Transcriptome profiles using next-generation sequencing reveal liver changes in the early stage of diabetes in tree shrew (Tupaia belangeri chinensis). Journal of Diabetes Research, 2016: 6238526.
    [93]
    Xu L, Yu DD, Fan Y, Peng L, Wu Y, Yao YG. 2016. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proceedings of the National Academy of Sciences of the United States of America, 113(39): 10950−10955.
    [94]
    Xu L, Yu DD, Ma YH, Yao YL, Luo RH, Feng XL, et al. 2020c. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526.
    [95]
    Xu L, Yu DD, Peng L, Wu Y, Fan Y, Gu TL, et al. 2020a. An alternative splicing of tupaia STING modulated anti-RNA virus responses by targeting MDA5-LGP2 and IRF3. The Journal of Immunology, 204(12): 3191−3204.
    [96]
    Xu L, Yu DD, Yao YL, Gu TL, Zheng X, Wu Y, et al. 2020b. Tupaia MAVS is a dual target during hepatitis c virus infection for innate immune evasion and viral replication via NF-κB. The Journal of Immunology, 205(8): 2091−2099.
    [97]
    Xu XP, Chen HB, Cao XM, Ben KL. 2007. Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. The Journal of General Virology, 88(Pt9): 2504−2512.
    [98]
    Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC, et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife, 1: e00049.
    [99]
    Yandell M, Ence D. 2012. A beginner's guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5): 329−342.
    [100]
    Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126.
    [101]
    Yao YG, Chen YB, Liang B. 2015. The 3rd symposium on animal models of primates - the application of non-human primates to basic research and translational medicine. Journal of Genetics and Genomics, 42(6): 339−341.
    [102]
    Yao YL, Yu DD, Xu L, Fan Y, Wu Y, Gu TL, et al. 2019. Molecular characterization of the 2', 5'-oligoadenylate synthetase family in the Chinese tree shrew (Tupaia belangeri chinensis). Cytokine, 114: 106−114.
    [103]
    Yim HS, Cho YS, Guang XM, Kang SG, Jeong JY, Cha SS, et al. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nature Genetics, 46(1): 88−92.
    [104]
    Yu DD, Wu Y, Xu L, Fan Y, Peng L, Xu M, et al. 2016. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (Tupaia belangeri chinensis). Developmental & Comparative Immunology, 60: 127−138.
    [105]
    Yu DD, Xu L, Liu XH, Fan Y, Lü LB, Yao YG. 2014. Diverse interleukin-7 mRNA transcripts in Chinese tree shrew (Tupaia belangeri chinensis). PLoS One, 9(6): e99859.
    [106]
    Yu GC, Wang LG, Han YY, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS:A Journal of Integrative Biology, 16(5): 284−287.
    [107]
    Zhang P, Chen JS, Li QY, Sheng LX, Gao YX, Lu BZ, et al. 2020a. Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 41(1): 3−19.
    [108]
    Zhang XM, Yu DD, Wu Y, Gu TL, Ma N, Dong SZ, et al. 2020b. Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. Applied Microbiology and Biotechnology, 104(20): 8813−8823.
    [109]
    Zhao Y, Wang JB, Kuang DX, Xu JW, Yang ML, Ma CX, et al. 2020. Susceptibility of tree shrew to SARS-CoV-2 infection. Scientific Reports, 10(1): 16007.
    [110]
    Zheng YT, Yao YG, Xu L. 2014. Basic Biology and Disease Models of Tree Shrews. Kunming: Yunnan Science and Technology Press, 1–475. (in Chinese)
    [111]
    Zhou YG, Fu BQ, Zheng XH, Wang DS, Zhao CC, Qi YJ, et al. 2020. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review, 7(6): 998−1002.
  • ZR-2021-272 Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1544) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return