Volume 42 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhe-Lun Peng, Bin-Xu Yin, Rui-Min Ren, Yin-Long Liao, Hao Cai, Heng Wang. Altered metabolic state impedes limb regeneration in salamanders. Zoological Research, 2021, 42(6): 772-782. doi: 10.24272/j.issn.2095-8137.2021.186
Citation: Zhe-Lun Peng, Bin-Xu Yin, Rui-Min Ren, Yin-Long Liao, Hao Cai, Heng Wang. Altered metabolic state impedes limb regeneration in salamanders. Zoological Research, 2021, 42(6): 772-782. doi: 10.24272/j.issn.2095-8137.2021.186

Altered metabolic state impedes limb regeneration in salamanders

doi: 10.24272/j.issn.2095-8137.2021.186
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (31771617) and HZAU-AGIS Cooperation Fund (SZYJY2021009)
More Information
  • Corresponding author: E-mail: wangheng@mail.hzau.edu.cn
  • Received Date: 2021-09-01
  • Accepted Date: 2021-10-12
  • Available Online: 2021-10-13
  • Publish Date: 2021-11-18
  • Salamanders are unique among tetrapods in their ability to regenerate the limbs throughout life. Like other poikilothermic amphibians, salamanders also show a remarkable capacity to survive long periods of starvation. Whether the physiological reserves necessary for tissue regeneration are preserved or sacrificed in starved salamanders is unknown. In the current study, we maintained Iberian ribbed newts (Pleurodeles waltl) under extreme physiological stress to assess the extent of regeneration and identify the molecular and cellular changes that may occur under such conditions. After 19 months of complete food deprivation, the animals exhibited extensive morphological and physiological adaptations but remained behaviorally active and vigilant. Autophagy was elevated in different tissues and the transformed gut microbiota indicated remodeling of the intestinal tract related to autophagy. Upon limb amputation in animals starved for 21 months, regeneration proceeded with progenitor cell proliferation and migration, leading to limb blastema formation. However, limb outgrowth and patterning were substantially attenuated. Blockage of autophagy inhibited cell proliferation and blastema formation in starved animals, but not in fed animals. Hence, tissue autophagy and the regenerative response were tightly coupled only when animals were under stress. Our results demonstrate that under adverse conditions, salamanders can exploit alternative strategies to secure blastema formation for limb regeneration.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Aronoff SL, Berkowitz K, Shreiner B, Want L. 2004. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectrum, 17(3): 183−190. doi: 10.2337/diaspect.17.3.183
    [2]
    Barth S, Glick D, Macleod KF. 2010. Autophagy: assays and artifacts. Journal of Pathology, 221(2): 117−124. doi: 10.1002/path.2694
    [3]
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852−857. doi: 10.1038/s41587-019-0209-9
    [4]
    Brockes JP, Kumar A. 2008. Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24: 525−549. doi: 10.1146/annurev.cellbio.24.110707.175336
    [5]
    Brøndsted HV. 1953. Rate of regeneration in planarians after starvation. Development, 1(1): 43−47. doi: 10.1242/dev.1.1.43
    [6]
    Buono R, Longo VD. 2018. Starvation, stress resistance, and cancer. Trends in Endocrinology & Metabolism, 29(4): 271−280.
    [7]
    Cai H, Peng ZL, Ren RM, Wang H. 2019. Efficient gene disruption via base editing induced stop in newt Pleurodeles waltl. Genes, 10(11): 837.
    [8]
    Carvalho JE, Navas CA, Pereira IC. 2010. Energy and water in aestivating amphibians. In: Arturo Navas C, Carvalho J E. Aestivation. Berlin: Springer, 141–169.
    [9]
    Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R, Haveron SM, et al. 2018. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Current Biology, 28(11): 1714−1724.e4. doi: 10.1016/j.cub.2018.04.015
    [10]
    Cheng CW, Adams GB, Perin L, Wei M, Zhou XY, Lam BS, et al. 2014. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell, 14(6): 810−823. doi: 10.1016/j.stem.2014.04.014
    [11]
    Cheng CW, Yilmaz ÖH. 2021. 100 Years of exploiting diet and nutrition for tissue regeneration. Cell Stem Cell, 28(3): 370−373. doi: 10.1016/j.stem.2021.02.014
    [12]
    Chera S, Buzgariu W, Ghila L, Galliot B. 2009. Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1793(9): 1432–1443.
    [13]
    Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, et al. 2018. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metabolism, 27(6): 1222−1235.e6. doi: 10.1016/j.cmet.2018.05.006
    [14]
    Demircan T, Ovezmyradov G, Yıldırım B, Keskin İ, İlhan AE, Fesçioğlu EC, et al. 2018. Experimentally induced metamorphosis in highly regenerative axolotl (ambystoma mexicanum) under constant diet restructures microbiota. Scientific Reports, 8(1): 10974. doi: 10.1038/s41598-018-29373-y
    [15]
    Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6): 685−688. doi: 10.1038/s41587-020-0548-6
    [16]
    Elewa A, Wang H, Talavera-López C, Joven A, Brito G, Kumar A, et al. 2017. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nature Communations, 8(1): 2286. doi: 10.1038/s41467-017-01964-9
    [17]
    Eming SA, Wynn TA, Martin P. 2017. Inflammation and metabolism in tissue repair and regeneration. Science, 356(6342): 1026−1030. doi: 10.1126/science.aam7928
    [18]
    Felix DA, Gutiérrez-Gutiérrez Ó, Espada L, Thems A, González-Estévez C. 2019. It is not all about regeneration: planarians striking power to stand starvation. Seminars in Cell & Developmental Biology, 87: 169−181.
    [19]
    Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS. 2008. Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 151(1): 85−92.
    [20]
    Furné M, Morales AE, Trenzado CE, García-Gallego M, Hidalgo MC, Domezain A, et al. 2012. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. Journal of Comparative Physiology B, 182(1): 63−76. doi: 10.1007/s00360-011-0596-9
    [21]
    González-Estévez C, Felix DA, Aboobaker AA, Saló E. 2007. Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proceedings of the National Academy of Sciences of the United States of America, 104(33): 13373−13378. doi: 10.1073/pnas.0703588104
    [22]
    Grably S, Piery Y. 1981. Weight and tissue changes in long term starved frogs Rana esculenta. Comparative Biochemistry And Physiology Part A: Physiology, 69(4): 683–688.
    [23]
    Hayashi T, Takeuchi T. 2016. Mutagenesis in newts: protocol for iberian ribbed newts. In: Kühn R, Wurst W, Wefers B. TALENs. New York: Humana Press, 119–126.
    [24]
    Hervant F, Mathieu J, Barré H. 1999. Comparative study on the metabolic responses of subterranean and surface-dwelling amphipods to long-term starvation and subsequent refeeding. Journal of Experimental Biology, 202(24): 3587−3595. doi: 10.1242/jeb.202.24.3587
    [25]
    Hervant F, Mathieu J, Durand J. 2001. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. Journal of Experimental Biology, 204(2): 269−281. doi: 10.1242/jeb.204.2.269
    [26]
    Hohtola E. 2012. Thermoregulatory adaptations to starvation in birds. In: McCue M. Comparative Physiology of Fasting, Starvation, and Food Limitation. Berlin: Springer, 155–170.
    [27]
    Honjoh S, Yamamoto T, Uno M, Nishida E. 2009. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature, 457(7230): 726–730.
    [28]
    Iglesias M, Felix DA, Gutiérrez-Gutiérrez Ó, De Miguel-Bonet MDM, Sahu S, Fernández-Varas B, et al. 2019. Downregulation of mTOR signaling increases stem cell population telomere length during starvation of immortal planarians. Stem Cell Reports, 13(2): 405−418. doi: 10.1016/j.stemcr.2019.06.005
    [29]
    Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. 2013. Fasting of mice: a review. Laboratory Animals, 47(4): 225−240. doi: 10.1177/0023677213501659
    [30]
    Joven A, Elewa A, Simon A. 2019. Model systems for regeneration: salamanders. Development, 146(14): dev167700. doi: 10.1242/dev.167700
    [31]
    Joven A, Kirkham M, Simon A. 2015. Husbandry of Spanish ribbed newts (Pleurodeles waltl). In: Kumar A, Simon A. Salamanders in Regeneration Research. New York: Humana Press, 47–70.
    [32]
    Kang C, You YJ, Avery L. 2007. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & Development, 21(17): 2161−2171.
    [33]
    Kohl KD, Amaya J, Passement CA, Dearing MD, Mccue MD. 2014. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiology Ecology, 90(3): 883−894. doi: 10.1111/1574-6941.12442
    [34]
    Kolodziejczyk AA, Zheng DP, Elinav E. 2019. Diet-microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 17(12): 742−753. doi: 10.1038/s41579-019-0256-8
    [35]
    Kristín P, Gvoždík L. 2012. Influence of respirometry methods on intraspecific variation in standard metabolic rates in newts. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 163(1): 147−151.
    [36]
    Lampert MA, Gustafsson ÅB. 2020. Mitochondria and autophagy in adult stem cells: proliferate or differentiate. Journal of Muscle Research and Cell Motility, 41(4): 355−362. doi: 10.1007/s10974-019-09542-w
    [37]
    Liu YM, Lou WPK, Fei JF. 2021. The engine initiating tissue regeneration: Does a common mechanism exist during evolution?. Cell Regeneration, 10(1): 12. doi: 10.1186/s13619-020-00073-1
    [38]
    Love NR, Ziegler M, Chen YY, Amaya E. 2014. Carbohydrate metabolism during vertebrate appendage regeneration: What is its role? How is it regulated? A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis. Bioessays, 36(1): 27−33. doi: 10.1002/bies.201300110
    [39]
    Mali LB, Sepčić K, Bulog B. 2013. Long-term starvation in cave salamander effects on liver ultrastructure and energy reserve mobilization. Journal of Morphology, 274(8): 887−900. doi: 10.1002/jmor.20145
    [40]
    Marsden ID. 1973. The influence of starvation on temperature relationships of metabolism in ectotherms. In: Wieser W. Effects of Temperature on Ectothermic Organisms. Berlin: Springer, 165–172.
    [41]
    Mauthe M, Orhon I, Rocchi C, Zhou XD, Luhr M, Hijlkema KJ, et al. 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8): 1435−1455. doi: 10.1080/15548627.2018.1474314
    [42]
    McCue MD. 2010. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 156(1): 1−18.
    [43]
    McLeod CJ, Wang L, Wong C, Jones DL. 2010. Stem cell dynamics in response to nutrient availability. Current Biology, 20(23): 2100−2105. doi: 10.1016/j.cub.2010.10.038
    [44]
    Merkle S, Hanke W. 1988. Long-term starvation in Xenopus laevis daudin——II. effects on several organs. Comparative Biochemistry And Physiology Part A:Physiology, 90(3): 491−495. doi: 10.1016/0300-9629(88)90225-3
    [45]
    Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, et al. 2018. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell, 22(5): 769−778.e4. doi: 10.1016/j.stem.2018.04.001
    [46]
    Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA, Anson RM, et al. 2019. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metabolism, 29(1): 221−228.e3. doi: 10.1016/j.cmet.2018.08.011
    [47]
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15(3): 1101−1111. doi: 10.1091/mbc.e03-09-0704
    [48]
    Mizushima N, Yoshimori T, Levine B. 2010. Methods in mammalian autophagy research. Cell, 140(3): 313−326. doi: 10.1016/j.cell.2010.01.028
    [49]
    Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE. 2012. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiology and Biochemistry, 38(4): 1145−1157. doi: 10.1007/s10695-011-9600-2
    [50]
    Pough FH. 1983. Amphibians and reptiles as low energy systems. In: Aspey WP, Lustic SI. Behavioral Energetics: the Cost of Survival in Vertebrates. Columbus: Ohio State University Press, 141–188.
    [51]
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1): D590−D596.
    [52]
    Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science, 330(6009): 1344−1348. doi: 10.1126/science.1193497
    [53]
    Sonnenburg ED, Sonnenburg JL. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism, 20(5): 779−786. doi: 10.1016/j.cmet.2014.07.003
    [54]
    Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1): 22−28. doi: 10.1093/nar/29.1.22
    [55]
    Tong Q, Cui LY, Hu ZF, Du XP, Wang HB. 2021. The effect of host, habitat and fasting time on the gut microbiota of amphibian. Research Square,doi: 10.21203/rs.3.rs-162992/v1.
    [56]
    Tran NT, Xiong F, Hao YT, Zhang J, Wu SG, Wang GT. 2018. Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture, 489: 121−129. doi: 10.1016/j.aquaculture.2018.02.016
    [57]
    Twitty VC, Delanney LE. 1939. Size regulation and regeneration in salamander larvae under complete starvation. Journal of Experimental Zoology, 81(3): 399−414. doi: 10.1002/jez.1400810305
    [58]
    Varga M, Sass M, Papp D, Takács-Vellai K, Kobolak J, Dinnyés A, et al. 2014. Autophagy is required for zebrafish caudal fin regeneration. Cell Death & Differentiation, 21(4): 547−556.
    [59]
    Walker DM, Hill AJ, Albecker MA, McCoy MW, Grisnik M, Romer A, et al. 2020. Variation in the slimy salamander (Plethodon Spp. ) skin and gut-microbial assemblages is explained by geographic distance and host affinity. Microbial Ecology, 79(4): 985−997. doi: 10.1007/s00248-019-01456-x
    [60]
    Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, et al. 2014. The intestinal microbiome of fish under starvation. BMC Genomics, 15(1): 266. doi: 10.1186/1471-2164-15-266
    [61]
    Yoda T, Crawshaw LI, Yoshida K, Su L, Hosono T, Shido O, et al. 2000. Effects of food deprivation on daily changes in body temperature and behavioral thermoregulation in rats. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 278(1): R134−R139. doi: 10.1152/ajpregu.2000.278.1.R134
    [62]
    Yun MH. 2015. Changes in regenerative capacity through lifespan. International Journal of Molecular Sciences, 16(10): 25392−25432. doi: 10.3390/ijms161025392
    [63]
    Yun MH, Hayashi T, Simon A. 2021. Standardized gene and genetic nomenclature for the newt Pleurodeles waltl. Developmental Dynamics,doi: 10.1002/dvdy.355.
    [64]
    Zhang Q, Wang YJ, Man LL, Zhu ZW, Bai X, Wei SM, et al. 2016. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration. Scientific Reports, 6(1): 20752. doi: 10.1038/srep20752
  • ZR-2021-186 Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (964) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return