• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
潘汝亮, Charles Oxnard. 2000: 猕猴属种间颅骨差异的探讨( 英文). 动物学研究, 21(4): 308-322.
引用本文: 潘汝亮, Charles Oxnard. 2000: 猕猴属种间颅骨差异的探讨( 英文). 动物学研究, 21(4): 308-322.
PAN Ru-Lian, Charles Oxnard. 2000. Craniodental Variation of Macaques (Macaca):Size,Function and Phylogeny. Zoological Research, 21(4): 308-322.
Citation: PAN Ru-Lian, Charles Oxnard. 2000. Craniodental Variation of Macaques (Macaca):Size,Function and Phylogeny. Zoological Research, 21(4): 308-322.

猕猴属种间颅骨差异的探讨( 英文)

Craniodental Variation of Macaques (Macaca):Size,Function and Phylogeny

  • 摘要: 为了研究猕猴属的颅骨差异性,从而探讨种间在形态、功能和系统分化方面的相互联系,测定了11个猕猴种类的77个颅骨变量,用于主成分分析和判别分析。应用巢式分析方法,分析过程包括3个步骤。所有变量根据功能和部位的不同首先分为7个单位:下颌、下颌齿、上颌齿、上面颅、下面颅、面颅后部和颅腔。第2步根据它们所揭示的相似性(具有相同的种间及 种内差异性类型)合并为3个解剖区域:咀嚼器官(下颌、下颌齿、上颌齿),面颅(上面颅和下面颅)和整个面颅后(面颅后和颅腔)。第3步从3个解剖区域筛选出27个变量代表整个颅骨的形态结构。除了寻找不同的功能单位,解剖区域及总的颅骨具有不同的种间和种内差异类外,此过程对筛出研究意义不大的变量起很重要的作用。上述分析过程分别用于对雌、雄性和两性的研究。所研究的11个猕猴种类间形成了3聚类。第1类包括食蟹猴(Macaca fasc icularis)、戴帽猴(M. sinica)和头巾猴(M.radiata);第2类包括猕猴( M.mulatta)、熊猴(M.assensis)、平顶猴(M.nemestrina)和黑猿(M.nigra);第3类包括蛮猴(M.sylvanus)、日本猴(M.fuscata)、短尾猴( M.arctoides)和藏酋猴(M.thibetana)。分别从两性差异、食物、生态、分类和系统分化方面进行了差异性讨论,结果认为猕猴种间颅骨的差异性主要是由于系统分化不同而引起个体差异所致,即种间和种内存在的个体差异。在主成分分析中,这些差异在不同的区域表现在不同的成分上。在咀嚼器官上种间的差异在第1主成分上,种内的差异则在第2主成分上。面颅的情况则刚好相反。这两种差异在面颅后及颅腔上则被第1和第2主成分所平分。这样,种间的差异在咀嚼器官上大于种内的差异。种内的差异在面颅上则大于种间的差异。这两种差异在面颅后和颅腔上则几乎大小相等。这一研究结果表明,与传统的概念不同,第2主成分不仅仅表现形态、形状的差异,而如同第1主成分一样,也表现形态的大小成分。此研究所 揭示的猕猴种间关系部分与Foden(1976,1980)和Delson(1980)相同。如平顶猴与黑猿、短尾猴、藏酋猴和熊猴的关系。食蟹猴、头巾猴和戴帽猴的关系则不同,并已得到有关分子生物学的支持,此3种可能来自同一祖先并经历相同的扩散过程。此研究所设计的巢式分析过程提供了一种很好的差异性研究手段。最终结果暗示在形态学研究中仅仅考虑某一区域的形态结构是很不够的,因为不同的部分具有不同的种间及种内差异类型。这在化石研究中尤其要注意。

     

    Abstract: In order to analyze skull variation in the genus Macaca,seventy-seven craniodental variables were taken from eleven species.They were first defined seven functional units comprising three anatomical regions.Twenty-seven variables were finally selected to carry out the morphology of the whole skull.The data,organized in these ways,were examined to discover variations between and within the various species.The methods used were Principal Components Analysis (PCA) and Discriminant Function Analysis (DFA).PCAs of the functional units anatomical regions,and the whole skull provided similar,though not identical,separations of species clusters in both sexes separately.These differences in structure could be related to size,sexual dimorphism,diet,ecology,classification and phylogeny.The question of size should have been easy to settle.Unfortunately,this is not the case.In this study where the raw data are measurements of the specimens,the main differences should be size.However,the size differences seem to occur in both the first and second (independent) multivariate axes.In some analyses the size differences between the species are biggest and appear in the first axis.In other analyses it is the separation between the sexes (and these too are largely size) that are the biggest and appear in the first axis.Yet in other analyses,both of these size separations,though still orthogonal to one another,present in the combination of the first two axes.This certainly implies that a single axis of body size is not present and that shape differences have not been isolated form size differences.It also implies that sexual dimorphism is a complex matter.As a result,the question of the relationships between the species is therefore also complex.One cluster of species that includes M.fascicularis,M.sinica and M.radiata was significantly isolated from all others regardless of level of analysis.This relationship is quite different from that proposed on the anatomy of the reproductive organs (Delson,1980;Fooden,1976,1980).

     

/

返回文章
返回