留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10

Wan-Yun He Xing-Xing Zhang Guo-Long Gao Ming-Yi Gao Fa-Gang Zhong Lu-Chao Lv Zhong-Peng Cai Xing-Feng Si Jun Yang Jian-Hua Liu

Wan-Yun He, Xing-Xing Zhang, Guo-Long Gao, Ming-Yi Gao, Fa-Gang Zhong, Lu-Chao Lv, Zhong-Peng Cai, Xing-Feng Si, Jun Yang, Jian-Hua Liu. Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10. Zoological Research, 2021, 42(4): 461-468. doi: 10.24272/j.issn.2095-8137.2021.153
Citation: Wan-Yun He, Xing-Xing Zhang, Guo-Long Gao, Ming-Yi Gao, Fa-Gang Zhong, Lu-Chao Lv, Zhong-Peng Cai, Xing-Feng Si, Jun Yang, Jian-Hua Liu. Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10. Zoological Research, 2021, 42(4): 461-468. doi: 10.24272/j.issn.2095-8137.2021.153

携带fosA3blaCTX-M-14的O101:H9-ST10和O101:H9-ST167型大肠杆菌在中国养殖场腹泻犊牛中的克隆传播,其中O101:H9-ST10型大肠杆菌可能来源于澳大利亚红嘴鸥

doi: 10.24272/j.issn.2095-8137.2021.153

Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10

Funds: This work was supported by the National Natural Science Foundation of China (31625026), International Science and Technology Cooperation Project of Xinjiang Production and Construction Corps (XPCC) (2019BC004), and Innovation Team Project of Guangdong University (2019KCXTD001)
More Information
  • 摘要: 在对2018年从中国新疆某养殖场分离的犊牛腹泻源大肠杆菌进行耐药性监测时,发现其对磷霉素耐药率异常高(48.5%),该研究旨在揭示其磷霉素耐药基因及其传播机制。聚合酶链式反应(PCR)结果显示,所有磷霉素耐药大肠杆菌均携带fosA3基因。脉冲场凝胶电泳(PFGE)和 Southern 印迹杂交结果显示,16 株fosA3阳性分离株属于四种不同的PFGE 谱型(即A、B、C、D)。11株D谱型克隆株的fosA3基因位于染色体上,而其余fosA3基因则由质粒携带。对全基因组测序和长读长测序结果进行分析发现,D谱型菌株为O101:H9-ST10型大肠杆菌,C、B、A谱型菌株分别为O101:H9-ST167、O8:H30-ST1431和未知ST的O101:H9型大肠杆菌。在 C谱型菌株中,fosA3基因与blaCTX-M-14基因共存于F18:A-:B1质粒上。有趣的是,基于核心基因组单核苷酸多态性(cgSNPs)的系统发育分析表明,O101:H9-ST10型大肠杆菌与同样携带fosA3基因和blaCTX-M-14基因的澳大利亚红嘴鸥源O101:H9-ST10型大肠杆菌密切相关,二者仅相差11个cgSNP。这些结果表明,O101:H9-ST10型高风险耐药大肠杆菌可能通过候鸟跨陆地传播。
    #Authors contributed equally to this work
  • Figure  1.  Antimicrobial resistance phenotypes of all E. coli isolates

    FOS, fosfomycin; AMP, ampicillin; FOX, cefoxidine; CAZ, ceftazidime; CQ, cefquinome; CTX, cefotaxime; IPM, imipenem; AMK, amikacin; STR, streptomycin; APR, apramycin; GEN, gentamicin; NEO, neomycin; TET, tetracycline; DOX, doxycycline; TGC, tigecycline; FFC, florfenicol; CL, colistin; SXT, trimethoprim-sulfamethoxazole; CIP, ciprofloxacin.

    Figure  2.  PFGE profiles, antimicrobial resistance genes, and genetic structure of fosA3-positive E. coli

    fosA3 genes in blue and red indicate location on plasmid and chromosome, respectively.

    Figure  3.  Genetic environment of fosA3 and blaCTX-M-14

    A: Complete sequence comparison of two F18:A-:B1 plasmids (pHNXJB277, GenBank accession No.: CP068043; pT28R-2, GenBank accession No.: CP049355.1). B: Incomplete chromosomal sequence of XJW9B263 (GenBank accession No.: CP067399), containing same ARGs as Chroicocephalus-derived isolate (GenBank accession No.: GCA_014156895.1). Blue and gray shadows indicate homologous regions in same and opposite directions, respectively; same color arrows indicate same genes. Branch length is drawn to scale.

    Figure  4.  Core genome SNP-based phylogenetic tree of E. coli ST10 strains

    cgSNP indicates total amount of core genome SNPs in E. coli ST10 strains against reference isolate XJW9B263.

    Figure  5.  Schematic of possible global dissemination of E. coli O101:H9-ST10 from Australian Chroicocephalus to Chinese cattle

    Green shadow indicates distribution of great crested tern (Thalasseus bergii cristatus).

    Table  1.   Genomic analysis of clonal E. coli O101:H9-ST10

    IsolateXJW9B263GCA_014156895.1
    Collection year20182017
    CountryChinaAustralia
    SourceCalfChroicocephalus
    SerotypeO101:H9O101:H9
    Antimicrobial
    resistance gene
    blaCTX-M-14, blaTEM-1B, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, tet(A), cmlA1, floR, mdf(A), mph(A), fosA3, sul2, dfrA14blaCTX-M-14, blaTEM-1B, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, tet(A), cmlA1, floR, mdf(A), mph(A), fosA3a, sul2, dfrA14
    Virulence geneaslA, ecpA, ecpB, ecpC, ecpD, ecpE, ecpR, entA, entB, entC, entD, entE, entF, entS, espL1, espL4, espX1, espX4, espX5, espY1, fdeC, fepA, fepB, fepC, fepD, fepG, fes, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, ompAaslA, ecpA, ecpB, ecpC, ecpE, ecpR, entA, entB, entC, entE, entF, entS, espL1, espX1, espX5, espY1, fdeC, fepA, fepB, fepC, fepD, fepG, fes, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, ompA
    PlasmidIncFIB, IncYIncFIB, IncY, Col(MG828)
    a indicates delta fosA3 gene likely truncated by whole-genome sequencing. Virulence genes and plasmids that differ from each other are underlined.
    下载: 导出CSV
  • [1] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455−477. doi: 10.1089/cmb.2012.0021
    [2] Bassetti M, Graziano E, Berruti M, Giacobbe DR. 2019. The role of fosfomycin for multidrug-resistant gram-negative infections. Current Opinion in Infectious Diseases, 32(6): 617−625. doi: 10.1097/QCO.0000000000000597
    [3] Begaud E, Mondet D, Germani Y. 1993. Molecular characterization of enterotoxigenic Escherichia coli (ETEC) isolated in New Caledonia (value of potential protective antigens in oral vaccine candidates). Research in Microbiology, 144(9): 721−728. doi: 10.1016/0923-2508(93)90036-2
    [4] Beutin L, Kruger U, Krause G, Miko A, Martin A, Strauch E. 2008. Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Applied and Environmental Microbiology, 74(15): 4806−4816. doi: 10.1128/AEM.00623-08
    [5] Cao YP, Lin QQ, He WY, Wang J, Yi MY, Lv LC, et al. 2020. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1 in a Chinese broiler farm. Zoological Research, 41(5): 569−575. doi: 10.24272/j.issn.2095-8137.2020.131
    [6] Chan J, Lo WU, Chow KH, Lai EL, Law PY, Ho PL. 2014. Clonal diversity of Escherichia coli isolates carrying plasmid-mediated fosfomycin resistance gene fosA3 from livestock and other animals. Antimicrobial Agents and Chemotherapy, 58(9): 5638−5639. doi: 10.1128/AAC.02700-14
    [7] Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX. 2007. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. Journal of Antimicrobial Chemotherapy, 59(5): 880−885. doi: 10.1093/jac/dkm065
    [8] Chirila F, Tabaran A, Fit N, Nadas G, Mihaiu M, Tabaran F, et al. 2017. Concerning increase in antimicrobial resistance in Shiga toxin-producing Escherichia coli isolated from young animals during 1980-2016. Microbes and Environments, 32(3): 252−259. doi: 10.1264/jsme2.ME17023
    [9] Constable PD. 2004. Antimicrobial use in the treatment of calf diarrhea. Journal of Veterinary Internal Medicine, 18(1): 8−17. doi: 10.1111/j.1939-1676.2004.tb00129.x
    [10] Contrepois M, Bertin Y, Pohl P, Picard B, Girardeau JP. 1998. A study of relationships among F17 a producing enterotoxigenic and non-enterotoxigenic Escherichia coli strains isolated from diarrheic calves. Veterinary Microbiology, 64(1): 75−81. doi: 10.1016/S0378-1135(98)00253-3
    [11] Cunha MPV, Lincopan N, Cerdeira L, Esposito F, Dropa M, Franco LS, et al. 2017. Coexistence of CTX-M-2, CTX-M-55, CMY-2, FosA3, and QnrB19 in extraintestinal pathogenic Escherichia coli from poultry in Brazil. Antimicrobial Agents and Chemotherapy, 61(4): e02474−16.
    [12] David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. 2019. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nature Microbiology, 4(11): 1919−1929. doi: 10.1038/s41564-019-0492-8
    [13] Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. 2016. Fosfomycin. Clinical Microbiology Reviews, 29(2): 321−347. doi: 10.1128/CMR.00068-15
    [14] Gautom RK. 1997. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. Journal of Clinical Microbiology, 35(11): 2977−2980. doi: 10.1128/jcm.35.11.2977-2980.1997
    [15] He D, Liu L, Guo B, Wu S, Chen X, Wang J, et al. 2017. Chromosomal location of the fosA3 and blaCTX-M genes in Proteus mirabilis and clonal spread of Escherichia coli ST117 carrying fosA3-positive IncHI2/ST3 or F2:A-:B- plasmids in a chicken farm. International Journal of Antimicrobial Agents, 49(4): 443−448. doi: 10.1016/j.ijantimicag.2016.12.009
    [16] He LY, Partridge SR, Yang XY, Hou JX, Deng YT, Yao QF, et al. 2013. Complete nucleotide sequence of pHN7A8, an F33:A-:B- type epidemic plasmid carrying blaCTX-M-65, fosA3 and rmtB from China. Journal of Antimicrobial Chemotherapy, 68(1): 46−50. doi: 10.1093/jac/dks369
    [17] Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, et al. 2011. Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to 'critically important' antibiotics among food animals in Hong Kong, 2008-10. Journal of Antimicrobial Chemotherapy, 66(4): 765−768. doi: 10.1093/jac/dkq539
    [18] Hou J, Huang X, Deng Y, He L, Yang T, Zeng Z, et al. 2012. Dissemination of the fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrobial Agents and Chemotherapy, 56(4): 2135−2138. doi: 10.1128/AAC.05104-11
    [19] Huang Y, Zeng L, Doi Y, Lv LC, Liu JH. 2020. Extended-spectrum β-lactamase-producing Escherichia coli. The Lancet Infectious Diseases, 20(4): 404−405. doi: 10.1016/S1473-3099(20)30115-8
    [20] Jiang W, Men S, Kong LH, Ma SZ, Yang YQ, Wang YX, et al. 2017. Prevalence of plasmid-mediated fosfomycin resistance gene fosA3 among CTX-M-producing Escherichia coli isolates from chickens in China. Foodborne Pathogens and Disease, 14(4): 210−218. doi: 10.1089/fpd.2016.2230
    [21] Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. 2015. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. Journal of Clinical Microbiology, 53(8): 2410−2426. doi: 10.1128/JCM.00008-15
    [22] Li P, Liu D, Zhang XZ, Tuo HM, Lei CW, Xie XJ, et al. 2019. Characterization of plasmid-mediated quinolone resistance in gram-negative bacterial strains from animals and humans in China. Microbial Drug Resistance, 25(7): 1050−1056. doi: 10.1089/mdr.2018.0405
    [23] Lupo A, Saras E, Madec JY, Haenni M. 2018. Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. Journal of Antimicrobial Chemotherapy, 73(4): 867−872. doi: 10.1093/jac/dkx489
    [24] Lv LC, Huang XY, Wang J, Huang Y, Gao X, Liu YY, et al. 2020. Multiple plasmid vectors mediate the spread of fosA3 in extended-spectrum-β-lactamase-producing Enterobacterales isolates from retail vegetables in China. mSphere, 5(4): e00507−20.
    [25] Mandal P, Kapil A, Goswami K, Das B, Dwivedi SN. 2001. Uropathogenic Escherichia coli causing urinary tract infections. Indian Journal of Medical Research, 114: 207−211.
    [26] Mukerji S, Gunasekera S, Dunlop JN, Stegger M, Jordan D, Laird T, et al. 2020. Implications of foraging and interspecies interactions of birds for carriage of Escherichia coli strains resistant to critically important antimicrobials. Applied and Environmental Microbiology, 86(20): e01610−20.
    [27] Mukerji S, Stegger M, Truswell AV, Laird T, Jordan D, Abraham RJ, et al. 2019. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. Journal of Antimicrobial Chemotherapy, 74(9): 2566−2574. doi: 10.1093/jac/dkz242
    [28] Nikaido H. 2009. Multidrug resistance in bacteria. Annual Review of Biochemistry, 78: 119−146. doi: 10.1146/annurev.biochem.78.082907.145923
    [29] Ruegg PL. 2017. A 100-year review: mastitis detection, management, and prevention. Journal of Dairy Science, 100(12): 10381−10397. doi: 10.3168/jds.2017-13023
    [30] Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. 2018. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clinical Microbiology and Infection, 24(4): 350−354. doi: 10.1016/j.cmi.2017.12.016
    [31] Sherry NL, Lane CR, Kwong JC, Schultz M, Sait M, Stevens K, et al. 2019. Genomics for molecular epidemiology and detecting transmission of carbapenemase-producing Enterobacterales in Victoria, Australia, 2012 to 2016. Journal of Clinical Microbiology, 57(9): e00573−19.
    [32] Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics, 27(7): 1009−1010. doi: 10.1093/bioinformatics/btr039
    [33] Sung JY, Shaffer EA, Lam K, Rususka I, Costerton JW. 1994. Hydrophobic bile salt inhibits bacterial adhesion on biliary stent material. Digestive Diseases and Sciences, 39(5): 999−1006. doi: 10.1007/BF02087551
    [34] Tan C, Tang XB, Zhang X, Ding Y, Zhao ZQ, Wu B, et al. 2012. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China. The Veterinary Journal, 192(3): 483−488. doi: 10.1016/j.tvjl.2011.06.038
    [35] Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33(9): 2233−2239. doi: 10.1128/jcm.33.9.2233-2239.1995
    [36] Villa L, Guerra B, Schmoger S, Fischer J, Helmuth R, Zong Z, et al. 2015. IncA/C plasmid carrying blaNDM-1, blaCMY-16, and fosA3 in a Salmonella enterica serovar Corvallis strain isolated from a migratory wild bird in Germany. Antimicrobial Agents and Chemotherapy, 59(10): 6597−6600. doi: 10.1128/AAC.00944-15
    [37] Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH. 2017a. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 38(2): 55−80. doi: 10.24272/j.issn.2095-8137.2017.003
    [38] Wang XM, Dong ZM, Schwarz S, Zhu Y, Hua X, Zhang YH, et al. 2017b. Plasmids of diverse Inc groups disseminate the fosfomycin resistance gene fosA3 among Escherichia coli isolates from pigs, chickens, and dairy cows in Northeast China. Antimicrobial Agents and Chemotherapy, 61(9): e00859−17.
    [39] Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6): e1005595. doi: 10.1371/journal.pcbi.1005595
    [40] Wieler LH, Sobjinski G, Schlapp T, Failing K, Weiss R, Menge C, et al. 2007. Longitudinal prevalence study of diarrheagenic Escherichia coli in dairy calves. Berliner und Münchener tierärztliche Wochenschrift, 120(7-8): 296−306.
    [41] Yan JJ, Hong CY, Ko WC, Chen YJ, Tsai SH, Chuang CL, et al. 2004. Dissemination of blaCMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrobial Agents and Chemotherapy, 48(4): 1353−1356. doi: 10.1128/AAC.48.4.1353-1356.2004
    [42] Yang XY, Liu WL, Liu YY, Wang J, Lv LC, Chen XJ, et al. 2014. F33:A-:B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and blaCTX-M-55/-14/-65 in Escherichia coli from chickens in China. Frontiers in Microbiology, 5: 688.
  • ZR-2021-153 Supplementary Materials.zip
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  341
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 录用日期:  2021-06-15
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回