Multilocus phylogeny suggests a distinct species status for the Nepal population of Assam macaques (Macaca assamensis): implications for evolution and conservation
-
摘要: 长期以来,基于形态、行为和分子特征的猕猴属(Macaca)斯里兰卡猴种组(sinica group)系统发育关系一直饱受争议。熊猴(M. assamensis)尼泊尔种群生活在该物种分布范围的最西部,形态特征独特,但其系统发育关系仍未有相关研究。本研究利用多个线粒体和Y染色体基因位点检验熊猴尼泊尔种群与其他猕猴间的系统发育关系,估算其分化时间与遗传距离。结果显示,斯里兰卡猴种组分化为两个主要分支:第一个分支包括藏酋猴(M. thibetana)、斯里兰卡猴(M. sinica)和熊猴指名亚种(M. assamensis assamensis),第二个分支包括帽猴(M. radiata)、喜马拉雅山脉东部和中部的白颊猕猴(M. leucogenys)、达旺猴(M. munzala)和熊猴尼泊尔种群。在第二分支当中,熊猴尼泊尔种群大约于1.9百万年前最先与该分支其他成员分开。研究结果揭示熊猴尼泊尔种群与东部的熊猴指名亚种显著分化,而与白颊猕猴和达旺猴更接近,说明熊猴尼泊尔种群可能是一个独立的物种。由于其系统发育关系特殊、分布区隔离且种群数量少,斯里兰卡猴种组尼泊尔种群亟需详细的分类修订并采取相应优先保护措施。Abstract: Phylogenetic relationships within the sinica-group of macaques based on morphological, behavioral, and molecular characteristics have remained controversial. The Nepal population of Assam macaques (Macaca assamensis) (NPAM), the westernmost population of the species, is morphologically distinct but has never been used in phylogenetic analyses. Here, the phylogenetic relationship of NPAM with other congeners was tested using multiple mitochondrial and Y-chromosomal loci. The divergence times and evolutionary genetic distances among macaques were also estimated. Results revealed two major mitochondrial DNA clades of macaques under the sinica-group: the first clade included M. thibetana, M. sinica, and eastern subspecies of Assam macaque (M. assamensis assamensis); the second clade included M. radiata together with species from the eastern and central Himalaya, namely, M. leucogenys, M. munzala, and NPAM. Among the second-clade species, NPAM was the first to diverge from the other members of the clade around 1.9 million years ago. Our results revealed that NPAM is phylogenetically distinct from the eastern Assam macaques and closer to other species and hence may represent a separate species. Because of its phylogenetic distinctiveness, isolated distribution, and small population size, the Nepal population of sinica-group macaques warrants detailed taxonomic revision and high conservation priority.
-
Key words:
- Himalaya /
- Macaques /
- Paraphyletic /
- sinica-group /
- Taxonomy
-
Figure 1. Map of Nepal showing NPAM sampling locations
Inset shows distribution range of Assam macaques, adapted from IUCN Red List 2020 (Boonratana et al., 2020).
Figure 2. ML gene tree of concatenated mtDNA (3 526 bp) among sinica-group macaques
Node values represent RAxML percentage bootstrap probability. Inset shows geographical distribution of sinica-group species; source: M. leucogenys (Fan et al., 2017); M. munzala (Biswas et al., 2011; Chakraborty et al., 2014; Sarania et al., 2017), M. a. assamensis (Minge et al., 2016; Zhou et al., 2011); NPAM (Khanal et al., 2018a, 2019).
Figure 5. Ultrametric tree showing divergence time estimates for macaques based on concatenated mtDNA sequences (3 526 bp) using BEAST
Blue bars indicate 95% highest posterior densities of divergence times and time scale below represents million years ago before present; nodal values represent Bayesian posterior probabilities.
Table 1. Primer pairs and PCR conditions for amplification of studied loci
S.N. Locus Primer pairs (Forward/Reverse) Ann. temp. Length (bp) References Name Sequence (5′–3′) 1. cyt b CYTF AACCATCGTTGTACTTCAAC 56 1 140 Khanal et al., 2018a CYTR TCTGGTTTACAAGGCCAGTG Khanal et al., 2018a 2 D-loop LqqF TCCTAGGGCAATCAGAAAGAAAG 58 1 090 Li & Zhang, 2004 Saru5 GGCCAGGACCAAGCCTATTT Hayasaka et al., 1991 3 16S rRNA 284F-EX GGATTAGATACCCCACTATGCTTG 58 1 397 Tosi et al., 2003 384R-EX GCTACCTTTGCACRGTCAGGGTACCG Tosi et al., 2003 4 TSPY1 TSPYA AGCCAGGAAGGCCTTTTCTCG 60 2 203 Kim et al., 1996 TSR1012 TGTCACCTGTGACGTTCACGA Bunlungsup et al., 2016 TSPY2 TSF566 AGGTCATTCATGGATGCAGAT 64 Bunlungsup et al., 2016 TSR1676 CCACAGTTATAACCTGCTTTGC Bunlungsup et al., 2016 TSPY3 TSF1383 AATCCCCTGCAATACTACAGGAGG 64 Bunlungsup et al., 2016 TSPY5R CTGTGCATAAGACCATGCTGAG Tosi et al., 2000 5 SRY SW2 CTTGAGAATACATTGTCAGGG 56 764 Whitfield et al., 1993 SW3B AGGTCTTTGTAGCCAATGTTACCCG Whitfield et al., 1993 Table 2. Estimates of evolutionary divergence over sequence pairs between sinica-group macaques using K2P model with cyt b sequences
Species 1 2 3 4 5 6 7 1. NPAM 0.01 0.013 0.016 0.012 0.016 0.016 2. M. munzala 0.039 0.013 0.018 0.012 0.017 0.017 3. M. leucogenys 0.069 0.073 0.016 0.013 0.016 0.016 4. M. assamensis 0.093 0.111 0.090 0.014 0.015 0.008 5. M. radiata 0.055 0.058 0.061 0.078 0.016 0.014 6. M. sinica 0.093 0.099 0.102 0.081 0.096 0.013 7. M. thibetana 0.090 0.102 0.087 0.026 0.075 0.067 Evolutionary distances (below diagonal) and standard error estimates (above diagonal). -
[1] Biswas J, Borah DK, Das A, Das J, Bhattacharjee PC, Mohnot SM, Horwich RH. 2011. The enigmatic Arunachal macaque: its biogeography, biology and taxonomy in northeastern India. American Journal of Primatology, 73(5): 458−473. doi: 10.1002/ajp.20924 [2] Boonratana R, Chalise MK, Das J, Htun S, Timmins RJ. 2020(2020-07-12). The IUCN red list of threatened species. https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species. [3] Bunlungsup S, Imai H, Hamada Y, Gumert MD, San AM, Malaivijitnond S. 2016. Morphological characteristics and genetic diversity of Burmese long-tailed Macaques (Macaca fascicularis aurea). American Journal of Primatology, 78(4): 441−455. doi: 10.1002/ajp.22512 [4] Chakraborty D, Ramakrishnan U, Panor J, Mishra C, Sinha A. 2007. Phylogenetic relationships and morphometric affinities of the Arunachal macaque Macaca munzala, a newly described primate from Arunachal Pradesh, northeastern India. Molecular Phylogenetics and Evolution, 44(2): 838−849. [5] Chakraborty D, Sinha A, Ramakrishnan U. 2014. Mixed fortunes: ancient expansion and recent decline in population size of a subtropical montane primate, the Arunachal macaque Macaca munzala. PLoS One, 9(7): e97061. doi: 10.1371/journal.pone.0097061 [6] Chalise MK. 2005. Characteristics of the Assamese monkey (Macaca assamensis) of Nepal. American Journal of Primatology, 66: 195. [7] Chalise MK. 2008. Primate census in Kathmandu and west parts of Nepal. Journal of natural History Museum, 23: 60−64. [8] Chalise MK. 2013. Fragmented primate population of Nepal. In: Marsh LK, Chapman CA. Primates in Fragments: Complexity and Resilience. New York: Springer, 329–356. [9] Deinard A, Smith DG. 2001. Phylogenetic relationships among the macaques: evidence from the nuclear locus NRAMP1. Journal of Human Evolution, 41(1): 45−59. doi: 10.1006/jhev.2001.0480 [10] Delson E. 1980. Fossil macaques, phyletic relationships and a scenario of development. In: Lindburg DG (Eds) The Macaques: Studies in Ecology, Behavior and Evolution. New York: Van Nostrand Reinhold, 10–30. [11] Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792−1797. doi: 10.1093/nar/gkh340 [12] Evans BJ, Gansauge MT, Tocheri MW, Schillaci MA, Sutikna T, Jatmiko, et al. 2020. Mitogenomics of macaques (Macaca) across Wallace's Line in the context of modern human dispersals. Journal of Human Evolution, 146: 102852. doi: 10.1016/j.jhevol.2020.102852 [13] Fa JE. 1989. The genus Macaca: a review of taxonomy and evolution. Mammal Review, 19(2): 45−81. doi: 10.1111/j.1365-2907.1989.tb00401.x [14] Fan PF, Liu Y, Zhang ZC, Zhao C, Li C, Liu WL, et al. 2017. Phylogenetic position of the white-cheeked macaque (Macaca leucogenys), a newly described primate from southeastern Tibet. Molecular Phylogenetics and Evolution, 107: 80−89. doi: 10.1016/j.ympev.2016.10.012 [15] Fooden J. 1976. Provisional classification and key to living species of macaques (Primates: Macaca). Folia Primatologica, 25(2–3): 225−236. [16] Fooden J. 1979. Taxonomy and evolution of the Sinica group of macaques: I. Species and subspecies accounts of Macaca sinica. Primates, 20(1): 109−140. doi: 10.1007/BF02373832 [17] Groves CP. 2001. Primate Taxonomy. Washington DC: Smithsonian Institution Press. [18] Hayasaka K, Fujii K, Horai S. 1996. Molecular phylogeny of Macaques: implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Molecular Biology and Evolution, 13(7): 1044−1053. doi: 10.1093/oxfordjournals.molbev.a025655 [19] Hayasaka K, Ishida T, Horai S. 1991. Heteroplasmy and polymorphism in the major noncoding region of Mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Molecular Biology and Evolution, 8(4): 399−415. [20] Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of Royal Society Biological Sciences: Biological Sciences, 270(1512): 313−321. doi: 10.1098/rspb.2002.2218 [21] Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42(2): 182−192. doi: 10.1093/sysbio/42.2.182 [22] Khanal L, Chalise MK, He K, Acharya BK, Kawamoto Y, Jiang XL. 2018a. Mitochondrial DNA analyses and ecological niche modeling reveal post-LGM expansion of the Assam macaque (Macaca assamensis) in the foothills of Nepal Himalaya. American Journal of Primatology, 80(3): e22748. doi: 10.1002/ajp.22748 [23] Khanal L, Chalise MK, Jiang XL. 2018b. Inconsistency in phylogeny of sinica-group of macaques. In: Satellite International Symposium on Asian Primates-2018. Kathmandu: Nepal Biodiveristy Research Society, 48–49. [24] Khanal L, Chalise MK, Jiang XL. 2019. Distribution of the threatened Assamese Macaque Macaca assamensis (Mammalia: Primates: Cercopithecidae) population in Nepal. Journal of Threatened Taxa, 11(1): 13047−13057. doi: 10.11609/jott.4623.11.1.13047-13057 [25] Khanal L, Chalise MK, Wan T, Jiang XL. 2018c. Riverine barrier effects on population genetic structure of the Hanuman langur (Semnopithecus entellus) in the Nepal Himalaya. BMC Evolutionary Biology, 18(1): 159. doi: 10.1186/s12862-018-1280-4 [26] Kim HS, Hirai H, Takenaka O. 1996. Molecular features of the TSPY gene of gibbons and Old World monkeys. Chromosome Research, 4(7): 500−506. doi: 10.1007/BF02261777 [27] Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111−120. doi: 10.1007/BF01731581 [28] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547−1549. [29] Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1695−1701. doi: 10.1093/molbev/mss020 [30] Li BG, He G, Guo ST, Hou R, Huang K, Zhang P, et al. 2020. Macaques in China: evolutionary dispersion and subsequent development. American Journal of Primatology, 82(7): e23142. [31] Li C, Zhao C, Fan PF. 2015. White-cheeked macaque (Macaca leucogenys): a new macaque species from Medog, southeastern Tibet. American Journal of Primatology, 77(7): 753−766. doi: 10.1002/ajp.22394 [32] Li J, Han K, Xing JC, Kim HS, Rogers J, Ryder OA, et al. 2009. Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene, 448(2): 242−249. [33] Li QQ, Zhang YP. 2004. A molecular phylogeny of Macaca based on mitochondrial control region sequences. Zoological Research, 25(5): 385−390. [34] Li QQ, Zhang YP. 2005. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), inferred from mitochondrial DNA sequences. Biochemical Genetics, 43(7–8): 375−386. [35] Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MAB, et al. 2015. Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics, 16(1): 222. [36] Matsudaira K, Hamada Y, Bunlungsup S, Ishida T, San AM, Malaivijitnond S. 2018. Whole mitochondrial genomic and Y-chromosomal phylogenies of Burmese long-tailed macaque (Macaca fascicularis aurea) suggest ancient hybridization between fascicularis and sinica species groups. Journal of Heredity, 109(4): 360−371. [37] Melnick DJ, Hoelzer GA. 1993. What is mtDNA good for in the study of primate evolution?. Evolutionary Anthropology, 2(1): 2−10. [38] Minge C, Berghänel A, Schülke O, Ostner J. 2016. Patterns and consequences of male-infant relationships in wild assamese macaques (Macaca assamensis). International Journal of Primatology, 37(3): 350−370. [39] Molur S, Brandon-Jones D, Dittus W, Eudey A, Kumar A, Singh M, et al. 2003. Status of South Asian primates: conservation assessment and management plan (C.A.M. P.). Coimbatore, India: Zoo Outreach Organization /CBSG-South Asia. [40] Morales JC, Melnick DJ. 1998. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. Journal of Human Evolution, 34(1): 1−23. doi: 10.1006/jhev.1997.0171 [41] Moritz C. 1994. Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10): 373−375. [42] Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 333. [43] Page SL, Chiu CH, Goodman M. 1999. Molecular phylogeny of old world monkeys (Cercopithecidae) as inferred from γ-globin DNA sequences. Molecular Phylogenetics and Evolution, 13(2): 348−359. doi: 10.1006/mpev.1999.0653 [44] Rambaut A, Suchard M, Xie D, Drummond A. 2014(2020-04-25). Tracer v1.6. – Computer program and documentation. https://www.scirp.org/reference/referencespapers.aspx?referenceid=2565011. [45] Roos C, Kothe M, Alba DM, Delson E, Zinner D. 2019. The radiation of macaques out of Africa: Evidence from mitogenome divergence times and the fossil record. Journal of Human Evolution, 133: 114−132. doi: 10.1016/j.jhevol.2019.05.017 [46] Sarania B, Devi A, Kumar A, Sarma K, Gupta AK. 2017. Predictive distribution modeling and population status of the endangered Macaca munzala in Arunachal Pradesh, India. American Journal of Primatology, 79(2): e22592. doi: 10.1002/ajp.22592 [47] Sinha A, Datta A, Madhusudan MD, Mishra C. 2005. Macaca munzala: a new species from western Arunachal Pradesh, Northeastern India. International Journal of Primatology, 26(4): 977−989. doi: 10.1007/s10764-005-5333-3 [48] Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033 [49] Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1): vey016. [50] Thierry B, Singh M, Kaumanns W. 2004. Why macaque societies?. In: Thierry B, Singh M, Kaumanns W. Macaque Societies – A Model for the Study of Social Organization. Cambridge: Cambridge University Press. [51] Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673−4680. [52] Tosi AJ, Morales JC, Melnick DJ. 2000. Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Molecular Phylogenetics and Evolution, 17(2): 133−144. doi: 10.1006/mpev.2000.0834 [53] Tosi AJ, Morales JC, Melnick DJ. 2003. Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution, 57(6): 1419−1435. doi: 10.1111/j.0014-3820.2003.tb00349.x [54] Wada K. 2005. The distribution pattern of rhesus and Assamese monkeys in Nepal. Primates, 46(2): 115−119. [55] Whitfield LS, Lovell-Badge R, Goodfellow PN. 1993. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364(6439): 713−715. [56] Zhou QH, Wei H, Huang ZH, Huang CM. 2011. Diet of the Assamese macaque Macaca assamensis in limestone habitats of Nonggang, China. Current Zoology, 57(1): 18−25. [57] Ziegler T, Abegg C, Meijaard E, Perwitasari-Farajallah D, Walter L, Hodges JK, et al. 2007. Molecular phylogeny and evolutionary history of Southeast Asian macaques forming the M. silenus group. Molecular Phylogenetics and Evolution, 42(3): 807−816. doi: 10.1016/j.ympev.2006.11.015 -
ZR-2020-279 Supplementary Tables.pdf
-