尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!


Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present

Li-Mei Yuan Xi-Ling Deng De-Chun Jiang Sebastian Klaus Nikolai L. Orlov Kong Yang Jia-Tang Li

Li-Mei Yuan, Xi-Ling Deng, De-Chun Jiang, Sebastian Klaus, Nikolai L. Orlov, Kong Yang, Jia-Tang Li. Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present. Zoological Research, 2021, 42(1): 116-123. doi: 10.24272/j.issn.2095-8137.2020.246
Citation: Li-Mei Yuan, Xi-Ling Deng, De-Chun Jiang, Sebastian Klaus, Nikolai L. Orlov, Kong Yang, Jia-Tang Li. Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present. Zoological Research, 2021, 42(1): 116-123. doi: 10.24272/j.issn.2095-8137.2020.246


doi: 10.24272/j.issn.2095-8137.2020.246

Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present

Funds: This work was supported by the National Natural Science Foundation of China (31722049, 31900322, 31911530101, 32070410); International Partnership Program of the Chinese Academy of Sciences (151751KYSB20190024); Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0501); Russian Foundation of Basic Research (RFBR_GFEN 19-54-53010); and Innovative Research Project for Postgraduates of Southwest Minzu University (CX2019SZ89)
More Information
  • 摘要: 泛树蛙属共包含26个物种,广泛分布于南亚,东南亚和东亚地区。泛树蛙属物种对海水不耐受且扩散能力较弱,是研究东南亚地区群岛间分布区域演化的理想材料。该研究选取了3个线粒体片段(12S rRNA, 16S rRNA, tRNAVal)以及3个核基因片段 (POMC, TRY, RHOD),对泛树蛙属物种进行分歧时间估算以及祖先区域重塑分析。研究结果表明,泛树蛙属于渐新世末期起源于巽他群岛地区,于中新世中期通过克拉地峡扩散至东南亚大陆,随后于中新世晚期开始通过红河断裂带扩散至东亚地区南部,在此期间全球气候变化促进了泛树蛙属物种的多样化。另外,P. leucomystax岛屿间的扩散模式验证了更新世时期东南亚各岛屿通过陆地相连的假说,并支持分布于菲律宾和日本的P. leucomystax物种可能源于人类活动导致的物种扩散。该研究描述了泛树蛙属物种的地理分布范围演化,为结合地质气候变化和物种扩散模式进行生物地理演化历程研究提供了参考。
    #Authors contributed equally to this work
  • Figure  1.  Phylogenetic tree inferred from mitochondrial and nuclear DNA

    Numbers above lines or beside nodes are given as Bayesian posterior probabilities (BPP)/bootstrap support (BSP) for maximum-likelihood analyses; "--" represents BPP and BSP lower than 0.9 and 50, respectively. Photograph of Polypedates megacephalus is from Jin-Long Ren.

    Figure  2.  Spatiotemporal reconstruction of Polypedate

    A: Estimation of ancestral areas for Polypedates and three closest related genera based on a Bayesian maximum clade credibility tree. Square labels on tree are range estimates according to DIVALIKE+J model, and pie charts represent posterior probability of ancestral ranges according to Bayesian Binary MCMC. Numbers at phylogenetic tree tip are consistent with numbers of species in Supplementary Table S1. B: Estimation of ancestral areas for Polypedates leucomystax based on Bayesian maximum clade credibility tree in Figure 2A. The 95% credibility interval of time estimates are given in square brackets. Square labels on tree are range estimates according to DIVALIKE+J model. Roman numerals are used for group distance estimation. C: Terrestrial areas are represented by coastline from Last Glacial Maximum (LGM) and current period, respectively. Data for each period were compiled from WORLDCLIM database with a resolution of 2.5 arc-minutes (Hijmans et al., 2005).

  • [1] Anczkiewicz R, Viola G, Müntener O, Thirlwall MF, Villa IM, Quong NQ. 2007. Structure and shearing conditions in the Day Nui Con Voi massif: implications for the evolution of the Red River shear zone in northern Vietnam. Tectonics, 26(2): TC2002.
    [2] Blair C, Davy CM, Ngo A, Orlov NL, Shi HT, Lu SQ, et al. 2013. Genealogy and Demographic History of a Widespread Amphibian throughout Indochina. Journal of Heredity, 104(1): 72−85. doi: 10.1093/jhered/ess079
    [3] Bouilhol P, Jagoutz O, Hanchar JM, Dudas FO. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth and Planetary Science Letters, 366: 163−175. doi: 10.1016/j.jpgl.2013.01.023
    [4] Brown RM, Linkem CW, Siler CD, Sukumaran J, Esselstyn JA, Diesmos AC, et al. 2010. Phylogeography and historical demography of Polypedates leucomystax in the islands of Indonesia and the Philippines: evidence for recent human-mediated range expansion?. Molecular Phylogenetics and Evolution, 57(2): 598−619. doi: 10.1016/j.ympev.2010.06.015
    [5] Buddhachat K, Suwannapoom C. 2018. Phylogenetic relationships and genetic diversity of the Polypedates leucomystax complex in Thailand. PeerJ, 6: e4263. doi: 10.7717/peerj.4263
    [6] Chen JM, Poyarkov NA Jr, Suwannapoom C, Lathrop A, Wu YH, Zhou WW, et al. 2018. Large-scale phylogenetic analyses provide insights into unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus Leptolalax (Anura: Megophryidae). Molecular Phylogenetics and Evolution, 124: 162−171. doi: 10.1016/j.ympev.2018.02.020
    [7] Cheng WJ, Harrison TM, Lovera OM. 1992. Thermochronology of the Ailaoshan-Red River shear zone-A case study of multiple diffusion domain model. Seismology and Geology, 14(2): 122−128. (in Chinese)
    [8] Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1(12): 875−880. doi: 10.1038/ngeo351
    [9] Dutta SK, Manamendra-Arachchi K. 1996. The amphibian fauna of Sri Lanka. Colombo: Wildlife Heritage Trust of Sri Lanka.
    [10] Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H. 2013. Phylogeography of Sophora davidii (Leguminosae) across the 'Tanaka-Kaiyong Line', an important phytogeographic boundary in Southwest China. Molecular Ecology, 22(16): 4270−4288. doi: 10.1111/mec.12388
    [11] Frost DR. 2019. Amphibian species of the word 6.0, an online reference. http://research.amnh.org/vz/herpetology/amphibia/.
    [12] Gonzalez P, Su YC, Siler CD, Barley AJ, Sanguila MB, Diesmos AC, et al. 2014. Archipelago colonization by ecologically dissimilar amphibians: evaluating the expectation of common evolutionary history of geographical diffusion in co-distributed rainforest tree frogs in islands of Southeast Asia. Molecular Phylogenetics and Evolution, 72: 35−41. doi: 10.1016/j.ympev.2013.12.006
    [13] Gower DJ, Kupfer A, Oommen OV, Himstedt W, Nussbaum RA, Loader SP, et al. 2002. A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): out of India or out of South East Asia?. Proceedings of the Royal Society B: Biological Sciences, 269(1500): 1563−1569. doi: 10.1098/rspb.2002.2050
    [14] Grosjean S, Ohler A, Chuaynkern Y, Cruaud C, Hassanin A. 2015. Improving biodiversity assessment of anuran amphibians using DNA barcoding of tadpoles. Case studies from Southeast Asia. Comptes Rendus Biologies, 338(5): 351−361.
    [15] Hall R. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall R, Holloway JD. Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys Publishers, 99–131.
    [16] Harrison TM, Chen WJ, Leloup PH, Ryerson FJ, Tapponnier P. 1992. An Early Miocene Transition in deformation regime within the Red River Fault Zone, Yunnan, And its significance for Indo-Asian tectonics. Journal of Geophysical Research: Solid Earth, 97(B5): 7159−7182. doi: 10.1029/92JB00109
    [17] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965−1978. doi: 10.1002/joc.1276
    [18] Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, et al. 2013. An update of Wallace’s zoogeographic regions of the world. Science, 339(6115): 74−78. doi: 10.1126/science.1228282
    [19] Hughes AC, Satasook C, Bates PJJ, Bumrungsri S, Jones G. 2011. Explaining the causes of the zoogeographic transition around the Isthmus of Kra: using bats as a case study. Journal of Biogeography, 38(12): 2362−2372. doi: 10.1111/j.1365-2699.2011.02568.x
    [20] Hughes JB, Round PD, Woodruff DS. 2003. The Indochinese–Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography, 30(4): 569−580. doi: 10.1046/j.1365-2699.2003.00847.x
    [21] Hutter CR, Lambert SM, Andriampenomanana ZF, Glaw F, Vences M. 2018. Molecular phylogeny and diversification of Malagasy bright-eyed tree frogs (Mantellidae: Boophis). Molecular Phylogenetics and Evolution, 127: 568−578. doi: 10.1016/j.ympev.2018.05.027
    [22] Inger RF. 1999. Distribution of amphibians in southern Asia and adjacent islands. In: Duellman WE. Patterns of Distribution of Amphibians: A Global Perspective. Baltimore: The John Hopkins University Press, 445–482.
    [23] Jiang DC, Klaus S, Zhang YP, Hillis DM, Li JT. 2019. Asymmetric biotic interchange across the Bering Land Bridge between Eurasia and North America. National Science Review, 6(4): 739−745. doi: 10.1093/nsr/nwz035
    [24] Klaus S, Schubart CD, Streit B, Pfenninger M. 2010. When Indian crabs were not yet Asian-biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evolutionary Biology, 10(1): 287. doi: 10.1186/1471-2148-10-287
    [25] Klaus S, Selvandran S, Goh JW, Wowor D, Brandis D, Koller P, et al. 2013. Out of Borneo: neogene diversification of Sundaic freshwater crabs (Crustacea: Brachyura: Gecarcinucidae: Parathelphusa). Journal of Biogeography, 40(1): 63−74. doi: 10.1111/j.1365-2699.2012.02771.x
    [26] Klaus S, Morley RJ, Plath M, Zhang YP, Li JT. 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications, 7(1): 12132. doi: 10.1038/ncomms12132
    [27] Kuraishi N, Matsui M, Ota H. 2009. Estimation of the Origin of Polypedates leucomystax (Amphibia: Anura: Rhacophoridae) Introduced to the Ryukyu Archipelago, Japan. Pacific Science, 63(3): 317−325. doi: 10.2984/049.063.0302
    [28] Kuraishi N, Matsui M, Hamidy A, Belabut DM, Ahmad N, Panha S, et al. 2013. Phylogenetic and taxonomic relationships of the Polypedates leucomystax complex (Amphibia). Zoologica Scripta, 42(1): 54−70. doi: 10.1111/j.1463-6409.2012.00562.x
    [29] Kurniati H. 2011. Vocalization of Asian striped tree frogs, Polypedates leucomystax (Gravenhorst, 1829) and P. iskandari Riyanto, Mumpuni & McGuire, 2011. Treubia, 38: 1–13.
    [30] Lee Grismer L, Wood PL Jr, Aowphol A, Cota M, Grismer MS, Murdoch ML, et al. 2017. Out of Borneo, again and again: biogeography of the Stream Toad genus Ansonia Stoliczka (Anura: Bufonidae) and the discovery of the first limestone cave-dwelling species. Biological Journal of the Linnean Society, 120(2): 371−395.
    [31] Li JT, Li Y, Klaus S, Rao DQ, Hillis DM, Zhang YP. 2013. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proceedings of the National Academy of Sciences of the United States of America, 110(9): 3441−3446. doi: 10.1073/pnas.1300881110
    [32] Lv YY, He K, Klaus S, Brown RM, Li JT. 2018. A comprehensive phylogeny of the genus Kurixalus (Rhacophoridae, Anura) sheds light on the geographical range evolution of frilled swamp treefrogs. Molecular Phylogenetics and Evolution, 121: 224−232. doi: 10.1016/j.ympev.2017.09.019
    [33] Matsui M, Seto T, Utsunomiya T. 1986. Acoustic and karyotypic evidence for specific separation of Polypedates megacephalus from P. leucomystax. Journal of Herpetology, 20(4): 483−489. doi: 10.2307/1564245
    [34] Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, et al. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293−1298. doi: 10.1126/science.1116412
    [35] Moss SJ, Wilson MEJ. 1998. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In: Hall R, Holloway JD. Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys Publishers, 133–163.
    [36] Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853−858. doi: 10.1038/35002501
    [37] Narins PM, Feng AS, Yong HS, Christensen-Dalsgaard J. 1998. Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in peninsular Malaysia. Herpetologica, 54(2): 129−142.
    [38] O'Connell KA, Smart U, Smith EN, Hamidy A, Kurniawan N, Fujita MK. 2018. Within-island diversification underlies parachuting frog (Rhacophorus) species accumulation on the Sunda Shelf. Journal of Biogeography, 45(4): 929−940. doi: 10.1111/jbi.13162
    [39] Pan SL, Dang NX, Wang JS, Zheng YT, Rao DQ, Li JT. 2013. Molecular Phylogeny Supports the Validity of Polypedates impresus Yang 2008. Asian Herpetological Research, 4(2): 124−133. doi: 10.3724/SP.J.1245.2013.00124
    [40] Pan T, Zhang YN, Wang H, Wu J, Kang X, Qian LF, et al. 2017. The reanalysis of biogeography of the Asian tree frog, Rhacophorus (Anura: Rhacophoridae): geographic shifts and climatic change influenced the dispersal process and diversification. PeerJ, 5: e3995. doi: 10.7717/peerj.3995
    [41] Replumaz A, Lacassin R, Tapponnier P, Leloup PH. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819−836. doi: 10.1029/2000JB900135
    [42] Rujirawan A, Stuart BL, Aowphol A. 2013. A new tree frog in the genus Polypedates (Anura: Rhacophoridae) from southern Thailand. Zootaxa, 3702(6): 545−565. doi: 10.11646/zootaxa.3702.6.3
    [43] Searle MP. 2006. Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society, 163(6): 1025−1036. doi: 10.1144/0016-76492005-144
    [44] Sutthiwisesa T, Taksintum W, Arunyawat U, Sangthong P, Jantrarotai P. 2020. Molecular identification of the morphologically cryptic Asian common treefrogs (Anura: Rhacophoridae, Polypedates leucomystax complex) in Thailand. Agriculture and Natural Resources, 54(1): 1−8.
    [45] Tang Y, Liu JL, Tran MD, Song ZJ, Wu WB, Zhang ZC, et al. 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone: constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, Western Yunnan, China. International Journal of Earth Sciences, 102(3): 605−626. doi: 10.1007/s00531-012-0831-y
    [46] Taylor EH. 1962. The amphibian fauna of Thailand. The University of Kansas Science Bulletin, 43: 265−599. doi: 10.5962/bhl.part.13347
    [47] Trépanier TL, Lathrop A, Murphy RW. 1999. Rhacophorus leucomystax in Vietnam with acoustic analyses of courtship and territorial calls. Asiatic Herpetological Research, 8: 102−106.
    [48] von Tschudi JJ. 1838. Classification der Batrachier mit Berücksichtigung der Fossilen Thiere Dieser Abtheilung der Reptilien. Neuchâtel: Petitpierre.
    [49] Voris HK. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27(5): 1153−1167. doi: 10.1046/j.1365-2699.2000.00489.x
    [50] Wallace AR. 1876. The Geographical Distribution of Animals. Vol. 2. London: Macmillan.
    [51] Wan SM, Kürschner WM, Clift PD, Li AC, Li TG. 2009. Extreme weathering/erosion during the Miocene climatic optimum: evidence from sediment record in the South China Sea. Geophysical Research Letters, 36(19): L19706. doi: 10.1029/2009GL040279
    [52] Werner YL. 1996. A complete guide to scientific and common names of reptiles and amphibians of the world by Norman Frank, Erica Ramus. Copeia, 1996(4): 1066−1069. doi: 10.2307/1447688
    [53] Wilkinson M, Sheps JA, Oommen OV, Cohen BL. 2002. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences. Molecular Phylogenetics and Evolution, 23(3): 401−407. doi: 10.1016/S1055-7903(02)00031-3
    [54] Woodruff DS, Turner LM. 2009. The Indochinese–Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. Journal of Biogeography, 36(5): 803−821. doi: 10.1111/j.1365-2699.2008.02071.x
    [55] Yuan ZY, Zhang BL, Raxworthy CJ, Weisrock DW, Hime PM, Jin JQ, et al. 2019. Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. National Science Review, 6(1): 10−14.
    [56] Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176): 279−283. doi: 10.1038/nature06588
    [57] Zhang BL, Liu RX, Xiang HF, Wan JL, Huang XN. 2009. FT dating of fault rocks in the central-southern section of the Red River Fault zone and its geological implications. Seismology and Geology, 31(1): 44−56. (in Chinese)
    [58] Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, Hu JS, et al. 2010a. Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Molecular Ecology, 19(16): 3406−3420. doi: 10.1111/j.1365-294X.2010.04747.x
    [59] Zhang MW, Rao DQ, Yang JX, Yu GH, Wilkinson JA. 2010b. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Molecular Phylogenetics and Evolution, 54(1): 47−58. doi: 10.1016/j.ympev.2009.10.019
    [60] Zhang P, Zhou H, Liang D, Liu YF, Chen YQ, Qu LH. 2005. The complete mitochondrial genome of a tree frog, Polypedates megacephalus (Amphibia: Anura: Rhacophoridae), and a novel gene organization in living amphibians. Gene, 346: 133−143. doi: 10.1016/j.gene.2004.10.012
  • ZR-2020-246-Supplementary materials.pdf
  • 加载中
  • 文章访问数:  1886
  • HTML全文浏览量:  876
  • PDF下载量:  270
  • 被引次数: 0
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-11-02
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2021-01-18