留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Host selection of ectoparasitic gamasid mites on Tylonycteris pachypus and T. robustula

Guang-Liang ZHANG Zhan-Hui TANG Ti-Yu HONG Jian YANG Yu ZENG Liang-Jing TAN Qi LIU Yi CHEN Qi-Qi SHEN Li-Biao ZHANG

Guang-Liang ZHANG, Zhan-Hui TANG, Ti-Yu HONG, Jian YANG, Yu ZENG, Liang-Jing TAN, Qi LIU, Yi CHEN, Qi-Qi SHEN, Li-Biao ZHANG. Host selection of ectoparasitic gamasid mites on Tylonycteris pachypus and T. robustula. Zoological Research, 2013, 34(1): 21-26. doi: 10.3724/SP.J.1141.2013.01021
Citation: Guang-Liang ZHANG, Zhan-Hui TANG, Ti-Yu HONG, Jian YANG, Yu ZENG, Liang-Jing TAN, Qi LIU, Yi CHEN, Qi-Qi SHEN, Li-Biao ZHANG. Host selection of ectoparasitic gamasid mites on Tylonycteris pachypus and T. robustula. Zoological Research, 2013, 34(1): 21-26. doi: 10.3724/SP.J.1141.2013.01021

扁颅蝠和褐扁颅蝠体表寄生革螨的宿主选择

doi: 10.3724/SP.J.1141.2013.01021
基金项目: 国家自然科学基金 (NSFC 30800102);广州市珠江科技新星专项 (2011J2200027);广东省昆虫研究所优秀青年人才基金(GDEI-yxqn201101)
详细信息
  • 中图分类号: Q959.833; Q958.9

Host selection of ectoparasitic gamasid mites on Tylonycteris pachypus and T. robustula

  • 摘要: 该文通过野外调查和室内行为实验,研究了扁颅蝠(Tylonycteris pachypus)和褐扁颅蝠(T. robustula)与其体表寄生革螨(雷氏巨刺螨(Macronyssus radovskyi)及拟雷氏巨刺螨(M. pararadovskyi))之间的关系。在野外自然条件下,雌性扁颅蝠的体表寄生革螨负荷量与宿主健康指数呈正相关(Spearman: rs=0.55,P<0.01,n=24),而在雄性扁颅蝠以及雌、雄褐扁颅蝠中则无相关性(P>0.05)。室内原宿主感染实验发现,扁颅蝠和褐扁颅蝠体表寄生革螨均明显倾向于选择各自的雄性宿主,扁颅蝠雌、雄性感染率分别为(42±12)%和(58±12)%(t=?3.6, df=31, P<0.01);褐扁颅蝠雌、雄性感染率分别为(37±11)%和(63±11)%(t=?6.1, df=26, P<0.001)。用扁颅蝠体表寄生革螨(拟雷氏巨刺螨)对扁颅蝠与褐扁颅蝠交叉感染后发现,寄生革螨明显选择其原宿主扁颅蝠,扁颅蝠与褐扁颅蝠感染率分别为(71±13)%和(29±13)%(t=9.1, df=29, P<0.001)。以上结果表明,扁颅蝠和褐扁颅蝠的体表寄生革螨负荷量与宿主身体状态无明显相关性,而对宿主性别表现不同偏好;扁颅蝠的体表寄生革螨对宿主表现明显的专一性。
  • [1] Bergströma S, Haemigb P D, Olsen B. 1999. Increased mortality of black-browed albatross chicks at a colony heavily-infested with the tick Ixodes uriae. Int J Parasitol, 29(9): 1359-1361.
    [2] Brown CR, Brown MB. 1986. Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology, 67(5): 1206-1218.
    [3] Brown CR, Brown MB. 2004. Group size and ectoparasitism affect daily survival probability in a colonial bird. Behav Ecol Sociobiol, 56(5): 498-511.
    [4] Bruyndonckx N, Dubey S, Ruedi M, Christe P. 2009. Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae). Mol Phylogenet Evol, 51(2): 227-237.
    [5] Bruyndonckx N, Biollaz F, Dubey S, Goudet J, Christe P. 2010. Mites as biological tags of their hosts. Mol Ecol, 19(13): 2770-2778.
    [6] Christe P, Arlettaz R, Vogel P. 2000. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett, 3(3): 207-212.
    [7] Christe P, Giorgi M S, Vogel P, Arlettaz R. 2003. Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization?. J Anim Ecol, 72(5): 866-872.
    [8] Christe P, Glaizot O, Evanno G, Bruyndonckx N, Devevey G, Yannic G, Patthey P, Maeder A, Vogel P, Arlettaz R. 2007. Host sex and ectoparasites choice: preference for, and higher survival on female hosts. J Anim Ecol, 76(4): 703-710.
    [9] Cox R, Stewart P D, Macdonald D W. 1998. The ectoparasites of the European badger, Meles meles, and the behavior of the host-specific flea, Paraceras melis. J Insect Behav, 12(2): 245-265.
    [10] Devine GJ, Ingvarsdóttir A, Mordue W, Pike AW, Pickett J, Duce I, Mordue AJ. 2000. Salmon lice, Lepeophtheirus salmonis, exhibit specific chemotactic responses to semiochemicals originating from the salmonid, Salmo salar. J Chem Ecol, 26(8): 1833-1847.
    [11] Dick CW. 2007. High host specificity of obligate ectoparasites. Ecol Entomol, 32(5): 446-450.
    [12] Dick CW, Patterson BD. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int J Parasitol, 37(8-9): 871-876.
    [13] Dick CW, Gannon MR, Little WE, Patrick MJ. 2003. Ectoparasite Associations of Bats from Central Pennsylvania. J Med Entomol, 40(6): 813-819.
    [14] Dittmar K, Porter ML, Murray S, Whiting MF. 2006. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Mol Phylogenet Evol, 38(1): 155-170.
    [15] Esbérard CE, Martins-Hatano F, Bittencourt EB, Bossi DE, Fontes A, Lareschi M, Menezes V, Bergallo HG, Gettinger D. 2005. A method for testing the host specificity of ectoparasites: give them the opportunity to choose. Memórias do Instituto Oswaldo Cruz, 100(7): 761-764.
    [16] Giorgi MS, Arlettaz R, Christe P, Vogel P. 2001. The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proc R Soc Lond B, 268(1480): 2071-2075.
    [17] Giorgi MS, Arlettaz R, Guillaume F, Nusslé S, Ossola C, Vogel P, Christe P. 2004. Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia, 138(4): 648-654.
    [18] Green AJ. 2001. Mass/length residuals: measures of body condition or generators of spurious results?. Ecology, 82(5): 1473-1483.
    [19] Guiller A, Deunff J. 2010. Spinturnicid mites and bats cophylogeny: Comment on Bruyndonckx et al. (2009) "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)". Mol Phylogenet Evol, 57(1): 479-480.
    [20] Johnson KP, Williams BL, Drown DM, Adams RJ, Clayton DH. 2002. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera). Mol Ecol, 11(1): 25-38.
    [21] Laurenco SI, Palmeirim JM. 2007. Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool Lond, 273(2): 161-168.
    [22] Lewis SE. 1996. Low roost-site fidelity in pallid bats: associated factors and effect on group stability. Behav Ecol Sociobiol, 39(5): 335-344.
    [23] Lu?an RK. 2006. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasit, 53(2): 147-152.
    [24] Møller AP. 2000. Survival and reproductive rate of mites in relation to resistance of their barn swallow hosts. Oecologia, 124(3): 351-357.
    [25] Neuhaus P. 2003. Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus) . Proc R Soc Lond B, 270(Suppl2): s213-s215.
    [26] Osterkamp J, Wahl U, Schmalfuss G, Haas W. 1999. Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A, 185(1): 59-67.
    [27] Perez-Orella C, Schulte-Hostedde AI. 2005. Effects of sex and body size on ectoparasite loads in the northern flying squirrel (Glaucomys sabrinus). Can J Zool, 83(10): 1381-1385.
    [28] Poulin R. 2007. Evolutionary Ecology of Parasites. London, UK: Chapman and Hall.
    [29] Reckardt K, Kerth G. 2009. Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein's bats. Oikos, 118(2): 183-190.
    [30] Reed DL, Hafner MS. 1997. Host specificity of chewing lice on pocket gophers: a potential mechanism for cospeciation . J Mammal, 78(2): 655-660.
    [31] Schulte-Hostedde A I, Zinner B, Millar J S, Hickling GJ. 2005. Restitution of mass-size residuals: validating body condition indices. Ecology, 86(1): 155-163.
    [32] Seneviratne SS, Fernando HC, Udagama-Randeniya PV. 2009. Host specificity in bat ectoparasites: a natural experiment. Int J Parasitol, 39(9): 995-1002.
    [33] Shatrov AB. 1992. The origin of parasitism in trombiculid mites (Acariformes: Trombiculidae). Parasitology, 26(1): 3-12.
    [34] Soler JJ, Møller AP, Soler M. 1999. A comparative study of host selection in the European cuckoo Cuculus canorus. Oecologia, 118(2): 265-276.
    [35] Sonenshine DE. 1993. Biology of Ticks. New York: Oxford University Press.
    [36] ter Hofstede HM, Fenton MB. 2005. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J Zool Lond, 266(4): 333-340.
    [37] Thomas F, Guegan JF, Michalakis Y, Renaud F. 2000. Parasites and host life-history traits: Implications for community ecology and species coexistence. Int J Parasitol, 30(5): 669-674.
    [38] Tian ZZ, Jin DC, Zhang SY, Zhang LB. 2009. A new species of Macronyssus (Mesostigmata, Macronyssidae) from China with redescription of Macronyssus radovskyi. Acta Zootaxonom Sin, 34(3): 415-422. [田珍灶, 金道超, 张树义, 张礼标. 2009. 中国巨刺螨属一新种和雷氏巨刺螨的重新描述(中气门目, 巨刺螨科). 动物分类学报, 34(3): 415-422.]
    [39] Timms R, Read AF. 1999. What makes a specialist special?. Trends Ecol Evol, 14(9): 333-334.
    [40] Tompkins DM, Jones T, Clayton DH. 1996. Effect of vertically transmitted ectoparasites on the reproductive success of swifts (Apus apus). Funct Ecol, 10(6): 733-740.
    [41] Tripet F, Jacot A, Richner H. 2002. Larval competition affects the life histories and dispersal behavior of an avian ectoparasite. Ecology, 83(4): 935-945.
    [42] Tripet F, Richner H. 1997. The coevolutionary potential of a‘generalist’ parasite, the hen flea Ceratophyllus gallinae. Parasitology, 115(4): 419-427.
    [43] Weddle CB. 2000. Effects of ectoparasites on nestling body mass in the house sparrow. Condor, 102(3): 684-687.
    [44] Whiteman NK, Parker PG. 2004. Body condition and parasite load predict territory ownership in the Galapagos hawk. Condor, 106(4): 915-921.
    [45] Zahn A, Rupp D. 2004. Ectoparasite load in European vespertilionid bats. J Zool Lond, 262(4): 383-391.
    [46] Zhang LB, Liang B, Zhou SY, Lu LR, Zhang SY. 2004. Group structure of lesser flat-headed bat Tylonycteris pachypus and greater flat-headed bat T. robustula. Acta Zool Sin, 50(3): 326-333. [张礼标, 梁冰, 周善义, 卢立仁, 张树义. 2004. 扁颅蝠与褐扁颅蝠的集群结构. 动物学报, 50(3): 326-333.]
    [47] Zhang LB, Parsons S, Daszak P, Wei L, Zhu GJ, Zhang SY. 2010. Variation in the abundance of ectoparasitic mites of flat-headed bats. J Mammal, 91(1): 136-143.
  • [1] Chang-Zhang Feng, Can-Chao Yang, Wei Liang.  Nest sanitation facilitates egg recognition in the common tailorbird, a plaintive cuckoo host, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.054
    [2] Zheng-Bo Wang, Dong-Dong Qin, Xin-Tian Hu.  Engrafted newborn neurons could functionally integrate into the host neuronal network, Zoological Research. doi: 10.13918/j.issn.2095-8137.2017.005
    [3] Feng-Chao LANG, Xin LI, Olga VLADMIROVA, Zhuo-Ran LI, Gui-Jun CHEN, Yu XIAO, Li-Hong LI, Dan-Feng LU, Hong-Bo HAN, Ju-Min ZHOU.  Selective recruitment of host factors by HSV-1 replication centers, Zoological Research.
    [4] Li-Biao ZHANG, Guang-Liang ZHANG, Zhan-Hui TANG, Ti-Yu HONG.  Relationships between ectoparasites and grooming behavior of Tylonycteris pachypus and T. robustula, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.6.0596
    [5] Kai HE, Naiqing HU, Joseph D. ORKIN, Daw Thida NYEIN, Chi MA, Wen XIAO, Pengfei FAN, Xuelong JIANG.  Molecular phylogeny and divergence time of Trachypithecus: with implications for the taxonomy of T. phayrei, Zoological Research. doi: 10.3724/SP.J.1141.2012.E05-06E104
    [6] LIU Yan, NIE Wen-hui, HUANG Ling, WANG Jin-huan, SU Wei-ting, LIN Chyi Chyang, Y..  Cloning, Characterization, and FISH Mapping of Four Satellite DNAs from Black Muntjac (Muntiacus crinifrons) and Fea’s Muntjac (M. feae), Zoological Research. doi: 10.3724/SP.J.1141.2008.03225
    [7] DAI Qiang, GU Hai-jun , WANG Yue-zhao.  Theories and Models for Habitat Selection, Zoological Research.
    [8] WU Dong-hui, YIN Wen-ying, YAN Ri-qing.  Effects of Vegetation Reclamation Practices on Soil Mite Communities in Seriously Alkalinized and Degraded Grasslands of Songnen, Northeastern China, Zoological Research.
    [9] Que Tengcheng, HU Yanling, Zhang Caichang, Huang Chengming, Mengxiuju.  Observations on the Hybrid F of Trachypthecus leucocephalus and T. francioisi and Its Offspring, Zoological Research.
    [10] ZHOU Qi, WANG Wen.  Detecting Natural Selection at the DNA Level, Zoological Research.
    [11] ZHANG Li-biao, LIANG Bing, ZHOU Shan-yi, LU Li-ren, ZHANG Shu-yi.  Prey Selection of Tylonycteris pachypus and T.Robustula (Chiroptera:Vespertilioninae) in Guangxi,China, Zoological Research.
    [12] ZHANG Hui-Jie, WANG Hui-Jin, LI Jian-She, ZHANG Li-Ping, DONG Zhe-Sheng, XU Qi.  The Relationship between the Fitness of Host Plants to Liriomyza sativae and the Structure of Leaf Blades, Zoological Research.
    [13] ZHAO Qi-kun.  Ecological Selection of Primate Social Behavior, Zoological Research.
    [14] XUE De-ming, XIN Bing-qian, QU Wen-yuan, ZHANG Wen-xue.  Studies on Humerus and Clavicula of Adult Taihang Mountains Macaca mulatta (M.m.tcheliensis), Zoological Research.
    [15] YANG Gui-bo, YE Zhi-zhang, HE Yuan-hui, PAN Ru-liang, WANG Hong.  A Comparison of the Masticatory Apparatus Among Rhinopithecus bieti,Macaca thibetana and M.m.lasiota, Zoological Research.
    [16] YU Fa-hong, PAN Ru-liang.  A Comparative Study on The Growth of Long Bones in M.thibetana and M.mulatta, Zoological Research.
    [17] SHI Fu-tian, ZHANG Zo-run.  The Community of Intestinal Flagellates and its Significance in the Classification of Their Host Termites, Zoological Research.
    [18] LU Pu-yen.  Pathological Changes in the Skin of Apodenus agrarius Produced by the Larvae of Trombiculid Mite (Gahrliepia saduski), Zoological Research.
    [19] MENG Yang-chun, LAN Ming-yang, ZHOU Zhi-yuan, LI Pei-xia.  Experimental Studies on the Surviving of Three Species of Gamasid Mites, Zoological Research.
    [20] YE Rui-yu, WANG Dun-qing.  Preliminary Study of the Gamasid Mites in Xinjiang Uighur Autonomous Region (Acarina:Gamasoidea), Zoological Research.
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  53
  • PDF下载量:  1739
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-01
  • 修回日期:  2012-12-25
  • 刊出日期:  2013-02-08

目录

    /

    返回文章
    返回