留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引用排行

1
Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data
Wen-Bin Yu, Guang-Da Tang, Li Zhang, Richard T. Corlett
2020, 41(3): 247-257. doi: 10.24272/j.issn.2095-8137.2020.022

The outbreak of COVID-19 started in mid-December 2019 in Wuhan, China. Up to 29 February 2020, SARS-CoV-2 (HCoV-19 / 2019-nCoV) had infected more than 85 000 people in the world. In this study, we used 93 complete genomes of SARS-CoV-2 from the GISAID EpiFluTM database to investigate the evolution and human-to-human transmissions of SARS-CoV-2 in the first two months of the outbreak. We constructed haplotypes of the SARS-CoV-2 genomes, performed phylogenomic analyses and estimated the potential population size changes of the virus. The date of population expansion was calculated based on the expansion parameter tau (τ) using the formula t=τ/2u. A total of 120 substitution sites with 119 codons, including 79 non-synonymous and 40 synonymous substitutions, were found in eight coding-regions in the SARS-CoV-2 genomes. Forty non-synonymous substitutions are potentially associated with virus adaptation. No combinations were detected. The 58 haplotypes (31 found in samples from China and 31 from outside China) were identified in 93 viral genomes under study and could be classified into five groups. By applying the reported bat coronavirus genome (bat-RaTG13-CoV) as the outgroup, we found that haplotypes H13 and H38 might be considered as ancestral haplotypes, and later H1 was derived from the intermediate haplotype H3. The population size of the SARS-CoV-2 was estimated to have undergone a recent expansion on 06 January 2020, and an early expansion on 08 December 2019. Furthermore, phyloepidemiologic approaches have recovered specific directions of human-to-human transmissions and the potential sources for international infected cases.

2
Why do we study animal toxins?
Yun ZHANG
2015, 36(4): 183-222. doi: 10.13918/j.issn.2095-8137.2015.4.183
Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins.
3
Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?
Yong-Gang Yao
2017, 38(3): 118-126. doi: 10.24272/j.issn.2095-8137.2017.032
The Chinese tree shrew (Tupaia belangeri chinensis), a squirrel-like and rat-sized mammal, has a wide distribution in Southeast Asia, South and Southwest China and has many unique characteristics that make it suitable for use as an experimental animal. There have been many studies using the tree shrew (Tupaia belangeri) aimed at increasing our understanding of fundamental biological mechanisms and for the modeling of human diseases and therapeutic responses. The recent release of a publicly available annotated genome sequence of the Chinese tree shrew and its genome database (www.treeshrewdb.org) has offered a solid base from which it is possible to elucidate the basic biological properties and create animal models using this species. The extensive characterization of key factors and signaling pathways in the immune and nervous systems has shown that tree shrews possess both conserved and unique features relative to primates. Hitherto, the tree shrew has been successfully used to create animal models for myopia, depression, breast cancer, alcohol-induced or non-alcoholic fatty liver diseases, herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV) infections, to name a few. The recent successful genetic manipulation of the tree shrew has opened a new avenue for the wider usage of this animal in biomedical research. In this opinion paper, I attempt to summarize the recent research advances that have used the Chinese tree shrew, with a focus on the new knowledge obtained by using the biological properties identified using the tree shrew genome, a proposal for the genome-based approach for creating animal models, and the genetic manipulation of the tree shrew. With more studies using this species and the application of cutting-edge gene editing techniques, the tree shrew will continue to be under the spot light as a viable animal model for investigating the basis of many different human diseases.
4
The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes
Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu
2017, 38(2): 55-80. doi: 10.24272/j.issn.2095-8137.2017.003
Antimicrobial resistance is an urgent global health challenge in human and veterinary medicine. Wild animals are not directly exposed to clinically relevant antibiotics; however, antibacterial resistance in wild animals has been increasingly reported worldwide in parallel to the situation in human and veterinary medicine. This underlies the complexity of bacterial resistance in wild animals and the possible interspecies transmission between humans, domestic animals, the environment, and wildlife. This review summarizes the current data on expanded-spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase, and colistin resistance genes in Enterobacteriaceae isolates of wildlife origin. The aim of this review is to better understand the important role of wild animals as reservoirs and vectors in the global dissemination of crucial clinical antibacterial resistance. In this regard, continued surveillance is urgently needed worldwide.
5
Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model
Ji Xiao, Rong Liu, Ce-Shi Chen
2017, 38(3): 127-137. doi: 10.24272/j.issn.2095-8137.2017.033
The tree shrew (Tupaia belangeri) is a promising laboratory animal that possesses a closer genetic relationship to primates than to rodents. In addition, advantages such as small size, easy breeding, and rapid reproduction make the tree shrew an ideal subject for the study of human disease. Numerous tree shrew disease models have been generated in biological and medical studies in recent years. Here we summarize current tree shrew disease models, including models of infectious diseases, cancers, depressive disorders, drug addiction, myopia, metabolic diseases, and immune-related diseases. With the success of tree shrew transgenic technology, this species will be increasingly used in biological and medical studies in the future.
6
Kidney disease models: tools to identify mechanisms and potential therapeutic targets
Yin-Wu Bao, Yuan Yuan, Jiang-Hua Chen, Wei-Qiang Lin
2018, 39(2): 72-86. doi: 10.24272/j.issn.2095-8137.2017.055
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
7
Antimicrobial peptides: new hope in the war against multidrug resistance
James Mwangi, Xue Hao, Ren Lai, Zhi-Ye Zhang
2019, 40(6): 488-505. doi: 10.24272/j.issn.2095-8137.2019.062
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
8
Application of the genome editing tool CRISPR/Cas9 in non-human primates
Xin LUO, Min LI, Bing SU
2016, 37(4): 214-219. doi: 10.13918/j.issn.2095-8137.2016.4.214
In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.
9
FasParser: a package for manipulating sequence data
Yan-Bo Sun
2017, 38(2): 110-112. doi: 10.24272/j.issn.2095-8137.2017.017
A computer software package called ‘FasParser’ was developed for manipulating sequence data. It can be used on personal computers to perform series of analyses, including counting and viewing differences between two sequences at both DNA and codon levels, identifying overlapping regions between two alignments, sorting of sequences according to their IDs or lengths, concatenating sequences of multiple loci for a particular set of samples, translating nucleotide sequences to amino acids, and constructing alignments in several different formats, as well as some extracting and filtrating of data for a particular FASTA file. Majority of these functions can be run in a batch mode, which is very useful for analyzing large data sets. This package can be used by a broad audience, and is designed for researchers that do not have programming experience in sequence analyses. The GUI version of FasParser can be downloaded from https://github.com/Sun-Yanbo/FasParser, free of charge.
10
Taxonomy is the cornerstone of biodiversity conservation-SEABRI reports on biological surveys in Southeast Asia
Shu-Qiang Li, Rui-Chang Quan
2017, 38(5): 213-214. doi: 10.24272/j.issn.2095-8137.2017.061
11
Chromosomal level assembly and population sequencing of the Chinese tree shrew genome
Yu Fan, Mao-Sen Ye, Jin-Yan Zhang, Ling Xu, Dan-Dan Yu, Tian-Le Gu, Yu-Lin Yao, Jia-Qi Chen, Long-Bao Lv, Ping Zheng, Dong-Dong Wu, Guo-Jie Zhang, Yong-Gang Yao
2019, 40(6): 506-521. doi: 10.24272/j.issn.2095-8137.2019.063
Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research.
12
Animal models for filovirus infections
Vinayakumar Siragam, Gary Wong, Xiang-Guo Qiu
2018, 39(1): 15-24. doi: 10.24272/j.issn.2095-8137.2017.053
The family Filoviridae, which includes the genera Marburgvirus and Ebolavirus, contains some of the most pathogenic viruses in humans and non-human primates (NHPs), causing severe hemorrhagic fevers with high fatality rates. Small animal models against filoviruses using mice, guinea pigs, hamsters, and ferrets have been developed with the goal of screening candidate vaccines and antivirals, before testing in the gold standard NHP models. In this review, we summarize the different animal models used to understand filovirus pathogenesis, and discuss the advantages and disadvantages of each model with respect to filovirus disease research.
13
ZIKA-How fast does this virus mutate?
Ian S. LOGAN
2016, 37(2): 110-115. doi: 10.13918/j.issn.2095-8137.2016.2.110
The World Health Organization has declared the present Zika virus epidemic to be a ‘Public Health Emergency of International Concern’. The virus appears to have spread from Thailand to French Polynesia in 2013, and has since infected over a million people in the countries of South and Central America. In most cases the infection is mild and transient, but the virus does appear to be strongly neurotropic and the presumptive cause of both birth defects in fetuses and Guillain-Barré syndrome in some adults. In this paper, the techniques and utilities developed in the study of mitochondrial DNA were applied to the Zika virus. As a result, it is possible to show in a simple manner how a phylogenetic tree may be constructed and how the mutation rate of the virus can be measured. The study showed the mutation rate to vary between 12 and 25 bases a year, in a viral genome of 10272 bases. This rapid mutation rate will enable the geographic spread of the epidemic to be monitored easily and may also prove useful in assisting the identification of preventative measures that are working, and those that are not.
14
Current understanding on the roles of gut microbiota in fish disease and immunity
Jin-Bo Xiong, Li Nie, Jiong Chen
2019, 40(2): 70-76. doi: 10.24272/j.issn.2095-8137.2018.069
Intensive aquaculture has increased the severity and frequency of fish diseases. Given the functional importance of gut microbiota in various facets of host physiology, modulation of this microbiota is a feasible strategy to mitigate emerging diseases in aquaculture. To achieve this, a fundamental understanding of the interplay among fish health, microbiota, and invading pathogens is required. This mini-review focuses on current knowledge regarding the associations between fish diseases, dysbiosis of gut microbiota, and immune responses. Furthermore, updated research on fish disease from an ecological perspective is discussed, including colonization resistance imposed by commensals and strategies used by pathogens to overcome resistance. We also propose several directions for future research, such as exploration of the causal links between fish diseases and specific taxa, and identification of universal gut microbial biomarkers for rapid disease diagnosis.
15
Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?
Gary Wong, Yu-Hai Bi, Qi-Hui Wang, Xin-Wen Chen, Zhi-Gang Zhang, Yong-Gang Yao
2020, 41(3): 213-219. doi: 10.24272/j.issn.2095-8137.2020.031

The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by infection with human coronavirus 2019 (HCoV-19 / SARS-CoV-2 / 2019-nCoV), is a global threat to the human population. Here, we briefly summarize the available data for the zoonotic origins of HCoV-19, with reference to the other two epidemics of highly virulent coronaviruses, SARS-CoV and MERS-CoV, which cause severe pneumonia in humans. We propose to intensify future efforts for tracing the origins of HCoV-19, which is a very important scientific question for the control and prevention of the pandemic.

16
Lamprey: a model for vertebrate evolutionary research
Yang XU, Si-Wei ZHU, Qing-Wei LI
2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263
Lampreys belong to the superclass Cyclostomata and represent the most ancient group of vertebrates. Existing for over 360 million years, they are known as living fossils due to their many evolutionally conserved features. They are not only a keystone species for studying the origin and evolution of vertebrates, but also one of the best models for researching vertebrate embryonic development and organ differentiation. From the perspective of genetic information, the lamprey genome remains primitive compared with that of other higher vertebrates, and possesses abundant functional genes. Through scientific and technological progress, scientists have conducted in-depth studies on the nervous, endocrine, and immune systems of lampreys. Such research has significance for understanding and revealing the origin and evolution of vertebrates, and could contribute to a greater understanding of human diseases and treatments. This review presents the current progress and significance of lamprey research.
17
 Animal models for the study of hepatitis B virus infection
Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang
2018, 39(1): 25-31. doi: 10.24272/j.issn.2095-8137.2018.013
Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV) worldwide. Current antiviral therapies, including interferon and nucleot(s)ide analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.
18
King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates
Feng Zhao, Xin-Qiang Lan, Yan Du, Pei-Yi Chen, Jiao Zhao, Fang Zhao, Wen-Hui Lee, Yun Zhang
2018, 39(2): 87-96. doi: 10.24272/j.issn.2095-8137.2018.025
Cationic antimicrobial peptides (AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings king cobra cathelicidin (OH-CATH) is a 34-amino acid peptide that exerts strong antibacterial and weak hemolytic activity. The aim of this research is to evaluate the efficacy of both OH-CATH30 and its analog D-OH-CATH30 against clinical isolates comparing with routinely utilized antibiotics in vitro. In this study, 584 clinical isolates were tested (spanning 2013–2016) and the efficacy of the candidate peptides and antibiotics were determined by a broth microdilution method according to the CLSI guidelines. Among the 584 clinical isolates, 85% were susceptible to OH-CATH30 and its analogs. Both L- and D-OH-CATH30 showed higher efficacy against (toward) Gram-positive bacteria and stronger antibacterial activity against nearly all Gram-negative bacteria tested compare with antibiotics. The highest bactericidal activity was detected against Acinetobacter spp., including multi-drug-resistant Acinetobacter baumannii (MRAB) and methicillin-resistant Staphylococcus aureus (MRSA). The overall efficacy of OH-CATH30 and its analogs was higher than that of the 9 routinely used antibiotics. OH-CATH30 is a promising candidate drug for the treatment of a wide variety of bacterial infections which are resistant to many routinely used antimicrobial agents.
19
Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates
Cun-Bao LIU, Bin SHAN, Hong-Mei BAI, Jing TANG, Long-Zong YAN, Yan-Bing MA
2015, 36(1): 41-47. doi: 10.13918/j.issn.2095-8137.2015.1.41
Multidrug resistant (MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides (AMPs), have recently shown powerful activities against both Gram-negative and Gram-positive bacteria. Unfortunately, the viability of using these AMPs in clinical settings remains to be seen, since most still need to be evaluated prior to clinical trials and not all of AMPs are potent against MDR clinical isolates. To find a connection between the characteristics of several of these AMPs and their effects against MDR pathogens, we selected 14 AMPs of animal origin with typical structures and evaluated their in vitro activities against clinical strains of extensive drug-resistant Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, extended spectrum β-lactamase-producing Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli. Our results showed that these peptides' hydrophilic/hydrophobic characteristics, rather than their secondary structures, may explain their antibacterial effects on these clinical isolates. Peptides that are amphipathic along the longitudinal direction seemed to be effective against Gram-negative pathogens, while peptides with hydrophilic terminals separated by a hydrophobic intermediate section appeared to be effective against both Gram-negative and Gram-positive pathogens. Among these, cathelicidin-BF was found to inhibit all of the Gram-negative pathogens tested at dosages of no more than 16 mg/L, killing a pandrug-resistant A. baumannii strain within 2 h at 4×MICs and 4 h at 2×MICs. Tachyplesin III was also found capable of inhibiting all Gram-negative and Gram-positive pathogens tested at no more than 16 mg/L, and similarly killed the same A. baumannii strain within 4 h at 4×MICs and 2×MICs. These results suggest that both cathelicidin-BF and tachyplesin III are likely viable targets for the development of AMPs for clinical uses.
20
Advances and perspectives in the application of CRISPR/Cas9 in insects
Lei CHEN, Gui WANG, Ya-Nan ZHU, Hui XIANG, Wen WANG
2016, 37(4): 220-228. doi: 10.13918/j.issn.2095-8137.2016.4.220
Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control.
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 共:9页