留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

当期目录

2021年 第42卷  第5期

显示方式:
2021, (5): 1-1.
The species within Xenarthra (sloths, anteaters, and armadillos) are quintessential South American mammals. Of the three groups, Vermilingua (anteaters) contains the fewest extant and paleontological species. Here, we sampled and sequenced the entire mitochondrial genomes (mitogenomes) of two Tamandua species (Tamandua tetradactyla and T. mexicana) (n=74) from Central and South America, as well as Myrmecophaga tridactyla (n=41) from South America. Within Tamandua, we detected three different haplogroups. The oldest (THI) contained many specimens with the T. tetradactyla morphotype (but also several with the T. mexicana morphotype) and originated in southeastern South America (currently Uruguay) before moving towards northern South America, where the THII haplogroup originated. THII primarily contained specimens with the T. mexicana morphotype (but also several with the T. tetradactyla morphotype) and was distributed in Central America, Colombia, and Ecuador. THI and THII yielded a genetic distance of 4%. THII originated in either northern South America or “in situ” in Central America with haplogroup THIII, which consisted of ~50% T. mexicana and 50% T. tetradactyla phenotypes. THIII was mostly located in the same areas as THII, i.e., Central America, Ecuador, and Colombia, though mainly in the latter. The three haplogroups overlapped in Colombia and Ecuador. Thus, T. tetradactyla and T. mexicana were not reciprocally monophyletic. For this reason, we considered that a unique species of Tamandua likely exists, i.e., T. tetradactyla. In contrast to Tamandua, M. tridactyla did not show different morphotypes throughout its geographical range in the Neotropics. However, two very divergent genetic haplogroups (MHI and MHII), with a genetic distance of ~10%, were detected. The basal haplogroup, MHI, originated in northwestern South America, whereas the more geographically derived haplogroup, MHII, overlapped with MHI, but also expanded into central and southern South America. Thus, Tamandua migrated from south to north whereas Myrmecophaga migrated from north to south. Our results also showed that temporal mitochondrial diversification for Tamandua began during the Late Pliocene and Upper Pleistocene, but for Myrmecophaga began during the Late Miocene. Furthermore, both taxa showed elevated levels of mitochondrial genetic diversity. Tamandua showed more evidence of female population expansion than Myrmecophaga. Tamandua experienced population expansion ~0.6–0.17 million years ago (Mya), whereas Myrmecophaga showed possible population expansion ~0.3–0.2 Mya. However, both taxa experienced a conspicuous female decline in the last 10 000–20 000 years. Our results also showed little spatial genetic structure for both taxa. However, several analyses revealed higher spatial structure in Tamandua than in Myrmecophaga. Therefore, Tamandua and Myrmecophaga were not subjected to the same biogeographical, geological, or climatological events in shaping their genetic structures.
The genetic adaptations of various organisms to heterogeneous environments in the northwestern Pacific remain poorly understood. Heterogeneous genomic divergence among populations may reflect environmental selection. Advancing our understanding of the mechanisms by which organisms adapt to different temperatures in response to climate change and predicting the adaptive potential and ecological consequences of anthropogenic global warming are critical. We sequenced the whole genomes of Japanese whiting (Sillago japonica) specimens collected from different latitudinal locations along the coastal waters of China and Japan to detect possible thermal adaptations. Using population genomics, a total of 5.48 million single nucleotide polymorphisms (SNPs) from five populations revealed a complete genetic break between the Chinese and Japanese groups, which was attributed to both geographic distance and local adaptation. The shared natural selection genes between two isolated populations (i.e., Zhoushan and Ise Bay/Tokyo Bay) indicated possible parallel evolution at the genetic level induced by temperature. These genes also indicated that the process of temperature selection on isolated populations is repeatable. Moreover, we observed natural candidate genes related to membrane fluidity, possibly underlying adaptation to cold environmental stress. These findings advance our understanding of the genetic mechanisms underlying the rapid adaptations of fish species. Species distribution projection models suggested that the Chinese and Japanese groups may have different responses to future climate change, with the former expanding and the latter contracting. The findings of this study enhance our understanding of genetic differentiation and adaptation to changing environments.
Inositol requiring mutant 80 (INO80) is a chromatin remodeler that regulates pluripotency maintenance of embryonic stem cells and reprogramming of somatic cells into pluripotent stem cells. However, the roles and mechanisms of INO80 in porcine pre-implantation embryonic development remain largely unknown. Here, we show that INO80 modulates trophectoderm epithelium permeability to promote porcine blastocyst development. The INO80 protein is highly expressed in the nuclei during morula-to-blastocyst transition. Functional studies revealed that RNA interference (RNAi)-mediated knockdown of INO80 severely blocks blastocyst formation and disrupts lineage allocation between the inner cell mass and trophectoderm. Mechanistically, single-embryo RNA sequencing revealed that INO80 regulates multiple genes, which are important for lineage specification, tight junction assembly, and fluid accumulation. Consistent with the altered expression of key genes required for tight junction assembly, a permeability assay showed that paracellular sealing is defective in the trophectoderm epithelium of INO80 knockdown blastocysts. Importantly, aggregation of 8-cell embryos from the control and INO80 knockdown groups restores blastocyst development and lineage allocation via direct complementation of the defective trophectoderm epithelium. Taken together, these results demonstrate that INO80 promotes blastocyst development by regulating the expression of key genes required for lineage specification, tight junction assembly, and fluid accumulation.
Amolops chunganensis is a species complex and reported widely from eastern, southern, and southwestern China. Based on molecular data of 19 populations of A. chunganensis sensu lato from China, including the population from Mt. Wuyi (type locality), we recognize A. chunganensis sensu stricto and provide an expanded description based on the topotypic specimens. Combining morphological and molecular data, we describe a new species, Amolops chaochin sp. nov. , from southwestern China, which was previously identified as A. chunganensis. The new species is distinguished from all other species in the A. monticola group by: (1) moderate body size, SVL 35.3−39.2 mm in males (n=7), and 50.5−54.4 mm in females (n=7); (2) distinct tympanum, larger than half of eye diameter; (3) small tooth-like projection on anteromedial edge of mandible; (4) circummarginal groove on all fingers; (5) white tubercles on dorsal side of posterior body in both sexes; (6) distinct tubercles on dorsal thigh and white spinose tubercles on dorsal tibia in both sexes; (7) white tubercles on posterior region of tympanum in males; (8) toe webbing reaching disk by dermal fringe on inner side of toe II; (9) vomerine teeth present; (10) transverse bands on dorsal limbs; (11) external vocal sacs present in males. We further reviewed the assignment of Amolops groups, with an overall revision of membership and diagnosis of all species groups.
The large yellow croaker (Larimichthys crocea), which is an economically important mariculture fish in China, is often exposed to environmental hypoxia. Reactive oxygen species (ROS) homeostasis is essential for the maintenance of normal physiological conditions in an organism. Direct evidence that environmental hypoxia leads to ROS overproduction is scarce in marine fish. Furthermore, the sources of ROS overproduction in marine fish under hypoxic stress are poorly known. In this study, we investigated the effects of hypoxia on redox homeostasis in L. crocea and the impact of impaired redox homeostasis on fish. We first confirmed that hypoxia drove ROS production mainly via the mitochondrial electron transport chain and NADPH oxidase complex pathways in L. crocea and its cell line (large yellow croaker fry (LYCF) cells). We subsequently detected a marked increase in the antioxidant systems of the fish. However, imbalance between the pro-oxidation and antioxidation systems ultimately led to excessive ROS and oxidative stress. Cell viability showed a remarkable decrease while oxidative indicators, such as malondialdehyde, protein carbonylation, and 8-hydroxy-2 deoxyguanosine, showed a significant increase after hypoxia, accompanied by tissue damage. N-acetylcysteine (NAC) reduced ROS levels, alleviated oxidative damage, and improved cell viability in vitro. Appropriate uptake of ROS scavengers (e.g., NAC and elamipretide Szeto-Schiller-31) and inhibitors (e.g., apocynin, diphenylene iodonium, and 5-hydroxydecanoate) may be effective at overcoming hypoxic toxicity. Our findings highlight previously unstudied strategies of hypoxic toxicity resistance in marine fish.
The genus Tropidophorus consists of small semi-aquatic lizards that dwell in lowland forest steams (Barbour, 1921; Bauer & Jackman, 2008). Here, we designate the neotype and re-describe T. guangxiensis Wen, 1992 based on newly collected topotypic specimens. We also describe a new subspecies from Xuefeng Mountain, Hongjiang County, Hunan Province, central South China. Based on two mitochondrial genes (12S rRNA and 16S rRNA), the phylogenetic position of T. guangxiensis is allocated for the first time. Additionally, our data strongly support that the new subspecies is phylogenetically closely related to T. g. guangxiensis. We also present a morphological identification key for known species and subspecies of Tropidophorus in China.
Butterflies are diverse in virtually all aspects of their ontogeny, including morphology, life history, and behavior. However, the developmental regulatory mechanisms underlying the important phenotypic traits of butterflies at different developmental stages remain unknown. Here, we investigated the developmental regulatory profiles of butterflies based on transposase accessible chromatin sequencing (ATAC-seq) at three developmental stages in two representative species (Papilio xuthus and Kallima inachus). Results indicated that 15%–47% of open chromatin peaks appeared in associated genes located 3 kb upstream (i.e., promoter region) of their transcription start site (TSS). Comparative analysis of the different developmental stages indicated that chromatin accessibility is a dynamic process and associated genes with differentially accessible (DA) peaks show functions corresponding to their phenotypic traits. Interestingly, the black color pattern in P. xuthus 4th instar larvae may be attributed to promoter peak-related genes involved in the melanogenesis pathway. Furthermore, many longevity genes in 5th instar larvae and pupae showed open peaks 3 kb upstream of their TSS, which may contribute to the overwintering diapause observed in K. inachus adults. Combined with RNA-seq analysis, our data demonstrated that several genes enriched in the melanogenesis and longevity pathways also exhibit higher expression, confirming that the expression of genes may be closely related to their phenotypic traits. This study offers new insights into larval cuticle color and adult longevity in butterflies and provides a resource for investigating the developmental regulatory mechanisms underlying butterfly ontogeny.

We describe a new species of the genus Hebius and provide evidence for the validity of H. septemlineatus   comb. nov.  . Morphological and molecular analyses of Hebius specimens collected in Yunnan Province, China, revealed three distinct lineages, namely the newly described Hebius weixiensis   sp. nov.  , as well as H. octolineatus (Boulenger, 1904), and H. septemlineatus   comb. nov.   (Schmidt 1925), which is removed from synonymy with H. octolineatus. Based on mitochondrial genealogy, Hebius weixiensis   sp. nov.   is sister to H. septemlineatus   comb. nov.  , while H. octolineatus is sister to H. bitaeniatus. The new species and H. septemlineatus   comb. nov.   showed considerable genetic divergence from their recognized congeners (uncorrected P-distance ≥3.9%). Furthermore, the new species and H. septemlineatus   comb. nov.   can be diagnosed from closely related congeners by a combination of pholidosis characters.

Viruses can be transmitted from animals to humans (and vice versa) and across animal species. As such, host-virus interactions and transmission have attracted considerable attention. Non-human primates (NHPs), our closest evolutionary relatives, are susceptible to human viruses and certain pathogens are known to circulate between humans and NHPs. Here, we generated global statistics on virus infections in NHPs (VI-NHPs) based on a literature search and public data mining. In total, 140 NHP species from 12 families are reported to be infected by 186 DNA and RNA virus species, 68.8% of which are also found in humans, indicating high potential for crossing species boundaries. The top 10 NHP species with high centrality in the NHP-virus network include two great apes (Pan troglodytes, Pongo pygmaeus) and eight Old World monkeys (Macaca mulatta, M. fascicularis, M. leonina, Papio cynocephalus, Cercopithecus ascanius, C. erythrotis, Chlorocebus aethiops, and Allochrocebus lhoesti). Given the wide distribution of Old World monkeys and their frequent contact with humans, there is a high risk of virus circulation between humans and such species. Thus, we suggest recurring epidemiological surveillance of NHPs, specifically Old World monkeys that are in frequent contact with humans, and other effective measures to prevent potential circulation and transmission of viruses. Avoidance of false positives and sampling bias should also be a focus in future work.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the global coronavirus disease 2019 (COVID-19) pandemic. Numerous studies have demonstrated that cardiovascular disease may affect COVID-19 progression. In the present study, we investigated the effect of hypertension on viral replication and COVID-19 progression using a hypertensive mouse model infected with SARS-CoV-2. Results revealed that SARS-CoV-2 replication was delayed in hypertensive mouse lungs. In contrast, SARS-CoV-2 replication in hypertensive mice treated with the antihypertensive drug captopril demonstrated similar virus replication as SARS-CoV-2-infected normotensive mice. Furthermore, antihypertensive treatment alleviated lung inflammation induced by SARS-CoV-2 replication (interleukin (IL)-1β up-regulation and increased immune cell infiltration). No differences in lung inflammation were observed between the SARS-CoV-2-infected normotensive mice and hypertensive mice. Our findings suggest that captopril treatment may alleviate COVID-19 progression but not affect viral replication.
The insect brain is the central part of the neurosecretory system, which controls morphology, physiology, and behavior during the insect’s lifecycle. Lepidoptera are holometabolous insects, and their brains develop during the larval period and metamorphosis into the adult form. As the only fully domesticated insect, the Lepidoptera silkworm Bombyx mori experienced changes in larval brain morphology and certain behaviors during the domestication process. Hormonal regulation in insects is a key factor in multiple processes. However, how juvenile hormone (JH) signals regulate brain development in Lepidoptera species, especially in the larval stage, remains elusive. We recently identified the JH receptor Methoprene tolerant 1 (Met1) as a putative domestication gene. How artificial selection on Met1 impacts brain and behavioral domestication is another important issue addressing Darwin’s theory on domestication. Here, CRISPR/Cas9-mediated knockout of Bombyx Met1 caused developmental retardation in the brain, unlike precocious pupation of the cuticle. At the whole transcriptome level, the ecdysteroid (20-hydroxyecdysone, 20E) signaling and downstream pathways were overactivated in the mutant cuticle but not in the brain. Pathways related to cell proliferation and specialization processes, such as extracellular matrix (ECM)-receptor interaction and tyrosine metabolism pathways, were suppressed in the brain. Molecular evolutionary analysis and in vitro assay identified an amino acid replacement located in a novel motif under positive selection in B. mori, which decreased transcriptional binding activity. The B. mori MET1 protein showed a changed structure and dynamic features, as well as a weakened co-expression gene network, compared with B. mandarina. Based on comparative transcriptomic analyses, we proposed a pathway downstream of JH signaling (i.e., tyrosine metabolism pathway) that likely contributed to silkworm larval brain development and domestication and highlighted the importance of the biogenic amine system in larval evolution during silkworm domestication.
Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The β subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null (mdx) mice and BaCl2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl2-injection. Compared to the control mice, the cKO mice showed decreased Pax7+ and MYH3+ SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.
In a precautionary response to the current coronavirus (COVID-19) pandemic, China’s Ministries permanently banned eating and trading in terrestrial wild (non-livestock) animals on 24 February 2020, and extensively updated the list of Fauna under Special State Protection (LFSSP) in 2020 and 2021, in which pangolins (Manidae spp.) were upgraded to the highest protection level. Examining 509 pangolin prosecution records from China Judgements online prior to these changes (01/01/14–31/12/19), we identified that Guangdong, Guangxi and Yunnan Provinces were hotspots for trade in whole pangolins and their scales. Interrupting trade in these three principal southern provinces would substantially fragment the pangolin trade network and reduce supply of imports from other south-east Asian countries. In the context of the revised legislation and strategies intended to prevent wildlife trade, we conclude that targeting interventions at key trade nodes could significantly reduce illegal trade in pangolins, and that this approach could also be effective with other taxa.
All extant species in the rodent family Spalacidae are subterranean and have evolved various traits for underground life. However, the phylogenomic relationships among its three subfamilies (Myospalacinae, Spalacinae, and Rhizomyinae) and the molecular basis underlying their adaptations to underground life remain poorly understood. Here, we inferred the phylogenomic relationships among these subfamilies based on de novo sequencing the genome of the hoary bamboo rat (Rhizomys pruinosus). Analyses showed that ~50% of the identified 11 028 one-to-one orthologous protein-coding genes and the concatenated sequences of these orthologous genes strongly supported a sister relationship between Myospalacinae and Rhizomyinae. The three subfamilies diversified from each other within ~2 million years. Compared with the non-subterranean controls with similar divergence dates, the spalacids shared more convergent genes with the African subterranean mole-rats at the genomic scale due to more rapid protein sequence evolution. Furthermore, these convergent genes were enriched in the functional categories of carboxylic acid transport, vascular morphogenesis, and response to oxidative stress, which are closely associated with adaptations to the hypoxic-hypercapnic underground environment. Our study presents a well-supported phylogenomic relationship among the three subfamilies of Spalacidae and offers new insights into the molecular adaptations of spalacids living underground.