留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in activity-dependent structural plasticity of neural circuits in cortex

RAO Xiao-Ping XU Zhi-Xiang XU Fu-Qiang

RAO Xiao-Ping, XU Zhi-Xiang, XU Fu-Qiang. Progress in activity-dependent structural plasticity of neural circuits in cortex. Zoological Research, 2012, 33(5): 527-536. doi: 10.3724/SP.J.1141.2012.05527
Citation: RAO Xiao-Ping, XU Zhi-Xiang, XU Fu-Qiang. Progress in activity-dependent structural plasticity of neural circuits in cortex. Zoological Research, 2012, 33(5): 527-536. doi: 10.3724/SP.J.1141.2012.05527

大脑皮层内活动依赖的神经环路结构可塑性研究进展

doi: 10.3724/SP.J.1141.2012.05527
基金项目: 国家自然科学基金杰出青年基金(08Q1011001); 中国科学院百人计划(08B1021001); 武汉光电国家实验室创新基金(Z08004); 中国科学院武汉物理与数学研究所重点资助项目(08K1011001)
详细信息
  • 中图分类号: Q4, Q189

Progress in activity-dependent structural plasticity of neural circuits in cortex

  • 摘要: 哺乳动物大脑皮层内的神经环路在神经发育、学习记忆、神经和精神疾病过程中表现出令人惊异的结构和功能可塑性。随着新的成像技术及分子生物学方法的应用, 在细胞和突触水平上观察活体皮层内神经环路的动态结构变化成为可能, 因此近十年来有关活动依赖的神经环路结构可塑性方面的研究进展迅速。该文综述了该方面的部分实验结果, 重点阐述个体生长发育、丰富环境、感觉剥夺、病理状态以及学习和记忆等过程和条件下树突的结构可塑性特点, 尤其是树突棘的形态和数量变化特征; 并简单介绍轴突的结构可塑性, 以及结构可塑性相关的分子和细胞机制, 最后提出未来该领域内亟待解决的问题。
  • [1] Alvarez VA, Sabatini BL. 2007. Anatomical and physiological plasticity of dendritic spines [J]. Annu Rev Neurosci, 30: 79-97.
    [2] Amaral MD, Pozzo-Miller L. 2009. The dynamics of excitatory synapse formation on dendritic spines [J]. Cellscience, 5(4): 19-25.
    [3] Bear MF, Huber KM, Warren ST. 2004. The mGluR theory of fragile X mental retardation [J]. Trends Neurosci, 27(7): 370-377.
    [4] Bhatt DH, Zhang SX, Gan WB. 2009. Dendritic spine dynamics [J]. Annu Rev Physiol, 71: 261-282.
    [5] Bourne J, Harris KM. 2007. Do thin spines learn to be mushroom spines that remember [J]? Curr Opin Neurobiol, 17(3): 381-386.
    [6] Chen JL, Nedivi E. 2010. Neuronal structural remodeling: is it all about access [J]? Curr Opin Neurobiol, 20(5): 557-562.
    [7] Chklovskii DB, Mel BW, Svoboda K. 2004. Cortical rewiring and information storage [J]. Nature, 431(7010): 782-788.
    [8] Dahlen JE, Jimenez DA, Gerkin RC, Urban NN. 2011. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb [J]. Front Neurosci, 5: 66.
    [9] De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K. 2006. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex [J]. Neuron, 49(6): 861-875.
    [10] Derkach VA, Oh MC, Guire ES, Soderling TR. 2007. Regulatory mechanisms of AMPA receptors in synaptic plasticity [J]. Nat Rev Neurosci, 8(2): 101-113.
    [11] Engert F, Bonhoeffer T. 1999. Dendritic spine changes associated with hippocampal long-term synaptic plasticity [J]. Nature, 399(6731): 66-70.
    [12] Fox K, Wong ROL. 2005. A comparison of experience-dependent plasticity in the visual and somatosensory systems [J]. Neuron, 48(3): 465-477.
    [13] Fu M, Yu XZ, Lu J, Zuo Y. 2012. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo [J]. Nature, 483(7387): 92-95.
    [14] Fu M, Zuo Y. 2011. Experience-dependent structural plasticity in the cortex [J]. Trends Neurosci, 34(4): 177-187.
    [15] Greer PL, Greenberg ME. 2008. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function [J]. Neuron, 59(6): 846-860.
    [16] Grutzendler J, Kasthuri N, Gan WB. 2002. Long-term dendritic spine stability in the adult cortex [J]. Nature, 420(6917): 812-816.
    [17] Hao JD, Rapp PR, Leffler AE, Leffler SR, Janssen WGM, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH. 2006. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys [J]. J Neurosci, 26(9): 2571-2578.
    [18] Ho VM, Lee JA, Martin KC. 2011. The cell biology of synaptic plasticity [J]. Science, 334(6056): 623-628.
    [19] Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain [J]. Nat Rev Neurosci, 10(9): 647-658.
    [20] Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K. 2006. Experience-dependent and cell-type-specific spine growth in the neocortex [J]. Nature, 441(7096): 979-983.
    [21] Holtmaat AJGD, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang XQ, Knott GW, Svoboda K. 2005. Transient and persistent dendritic spines in the neocortex in vivo [J]. Neuron, 45(2): 279-291.
    [22] Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. 2010. Structural dynamics of dendritic spines in memory and cognition [J]. Trends Neurosci, 33(3): 121-129.
    [23] Kaufmann WE, Moser HW. 2000. Dendritic anomalies in disorders associated with mental retardation [J]. Cereb Cortex, 10(10): 981-991.
    [24] Kennedy MB, Beale HC, Carlisle HJ, Washburn LR. 2005. Integration of biochemical signalling in spines [J]. Nat Rev Neurosci, 6(6): 423-434.
    [25] Kennedy MJ, Ehlers MD. 2006. Organelles and trafficking machinery for postsynaptic plasticity [J]. Annu Rev Neurosci, 29: 325-362.
    [26] Kwon HB, Sabatini BL. 2011. Glutamate induces de novo growth of functional spines in developing cortex [J]. Nature, 474(7349): 100-104.
    [27] Lee WC, Huang H, Feng GP, Sanes JR, Brown EN, So PT, Nedivi E. 2006. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex [J]. PLoS Biol, 4(2): e29.
    [28] Lendvai B, Stern EA, Chen B, Svoboda K. 2000. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo [J]. Nature, 404(6780): 876-881.
    [29] Leslie JH, Nedivi E. 2011. Activity-regulated genes as mediators of neural circuit plasticity [J]. Prog Neurobiol, 94(3): 223-237.
    [30] Majewska A, Sur M. 2003. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation [J]. Proc Natl Acad Sci USA, 100(26): 16024-16029.
    [31] Marik SA, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD. 2010. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex [J]. PLoS Biol, 8(6): e1000395.
    [32] Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ. 2004. Interneurons of the neocortical inhibitory system [J]. Nat Rev Neurosci, 5(10): 793-807.
    [33] Mataga N, Mizuguchi Y, Hensch TK. 2004. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator [J]. Neuron, 44(6): 1031-1041.
    [34] Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H. 2004. Structural basis of long-term potentiation in single dendritic spines [J]. Nature, 429(6993): 761-766.
    [35] Mizrahi A. 2007. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb [J]. Nat Neurosci, 10(4): 444-452.
    [36] Mizrahi A, Crowley JC, Shtoyerman E, Katz LC. 2004. High-resolution in vivo imaging of hippocampal dendrites and spines [J]. J Neurosci, 24(13): 3147-3151.
    [37] Mizrahi A, Katz LC. 2003. Dendritic stability in the adult olfactory bulb [J]. Nat Neurosci, 6(11): 1201-1207.
    [38] Mozzachiodi R, Byrne JH. 2010. More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory [J]. Trends Neurosci, 33(1): 17-26.
    [39] Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y. 1993. Numerous candidate plasticity-related genes revealed by differential cDNA cloning [J]. Nature, 363(6431): 718-722.
    [40] Oray S, Majewska A, Sur M. 2004. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation [J]. Neuron, 44(6): 1021-1030.
    [41] Pan F, Aldridge GM, Greenough WT, Gan WB. 2010. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome [J]. Proc Natl Acad Sci USA, 107(41): 17768-17773.
    [42] Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. 2006. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes [J]. Neuron, 52(5): 817-830.
    [43] Patterson M, Yasuda R. 2011. Signalling pathways underlying structural plasticity of dendritic spines [J]. Br J Pharmacol, 163(8): 1626-1638.
    [44] Roberts TF, Tschida KA, Klein ME, Mooney R. 2010. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning [J]. Nature, 463(7283): 948-952.
    [45] Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, Charneau P, Shepherd GM, Lledo PM. 2005. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation [J]. Neuron, 46(1): 103-116.
    [46] Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. 2006. Axons and synaptic boutons are highly dynamic in adult visual cortex [J]. Neuron, 49(6): 877-887.
    [47] Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite [J]. Nature, 402(6760): 421-425.
    [48] Trachtenberg JT, Chen BE, Knott GW, Feng GP, Sanes JR, Welker E, Svoboda K. 2002. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex [J]. Nature, 420(6917): 788-794.
    [49] Tsai J, Grutzendler J, Duff K, Gan WB. 2004. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches [J]. Nat Neurosci, 7(11): 1181-1183.
    [50] Xu TH, Yu XZ, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y. 2009. Rapid formation and selective stabilization of synapses for enduring motor memories [J]. Nature, 462(7275): 915-919.
    [51] Yamahachi H, Marik SA, McManus JNJ, Denk W, Gilbert CD. 2009. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex [J]. Neuron, 64(5): 719-729.
    [52] Yang G, Pan F, Gan WB. 2009. Stably maintained dendritic spines are associated with lifelong memories [J]. Nature, 462(7275): 920-924.
    [53] Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies [J]. Nat Rev Neurosci, 5(1): 24-34.
    [54] Zhou Q, Homma KJ, Poo MM. 2004. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses [J]. Neuron, 44(5): 749-757.
    [55] Ziv NE, Ahissar E. 2009. Neuroscience: New tricks and old spines [J]. Nature, 462(7275): 859-861.
    [56] Zuo Y, Lin A, Chang P, Gan WB. 2005a. Development of long-term dendritic spine stability in diverse regions of cerebral cortex [J]. Neuron, 46(2): 181-189.
    [57] Zuo Y, Yang G, Kwon E, Gan WB. 2005b. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex [J]. Nature, 436(7048): 261-265.
  • [1] Xiao-Li FAN, Zhi-Hua LIN, Jie WEI.  Effects of hydroperiod duration on developmental plasticity in tiger frog (Hoplobatrachus chinensis) tadpoles, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.2.124
    [2] You-Jun OU, Ru-Jian LIU, Jia-Er LI, Shou-Hua CAO.  Structural changes in mitochondrion-rich cells in the gills of artificial selected Trachinotus ovatus offspring under different salinities, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.4.0411
    [3] HE Xiong, ZHONG Zhao-Ming, CHE Yi.  Locomotor activity and learning and memory abilities in Alzheimer’s disease induced by Aluminum in an acid environment in Zebrafish, Zoological Research. doi: 10.3724/SP.J.1141.2012.02231
    [4] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin.  Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory, Zoological Research. doi: 10.3724/SP.J.1141.2011.01024
    [5] XIA Hou-JUN, ZHANG Gao-Hong, ZHENG Yong-Tang.  Roles of Dendritic Cell in Disease Progression of AIDS Primate Models, Zoological Research. doi: 10.3724/SP.J.1141.2010.01057
    [6] ZHAO Zhi-jun, WANG Rui-rui, CAO Jing, PEI Lan-ying.  Effect of Random Food Deprivation and Refeeding on Energy Budget and Development in Mice, Zoological Research. doi: 10.3724/SP.J.1141.2009.05534
    [7] WU Kun, XU Lin, HUANG Jing-fei.  Role of Specific Synaptic Plasticity Interfering Peptides in the Expression of Morphine Induced Conditioned Place Preference in Mice  , Zoological Research. doi: 10.3724/SP.J.1141.2009.04389
    [8] CAO Dong, CAO Jun, HAO Wei, XU Lin.  Hippocampal Combinatorial Plasticity Induced by Conditioning of Converging Schaffer-CA1 Pathways in Rat in vivo, Zoological Research. doi: 10.3724/SP.J.1141.2009.04396
    [9] LU Xiao-peng, LI Jian, SUN Zheng-hua, ZHAO Na, LIU Jie, ZHANG Hua-tang.  A “2+2 days” Fast Protocol for the Generation of Dendritic Cells from Human Blood Monocytes, Zoological Research. doi: 10.3724/SP.J.1141.2008.04415
    [10] XU Ye-hua, WANG Hao, CHEN Qin, ZHOU Yi-feng, *.  Age and Sex-related Dendritic Changes in the Visual Cortex of the Rat, Zoological Research.
    [11] Que Tengcheng, HU Yanling, Zhang Caichang, Huang Chengming, Mengxiuju.  Observations on the Hybrid F of Trachypthecus leucocephalus and T. francioisi and Its Offspring, Zoological Research.
    [12] WANG Xiong-qing, RUAN Qi-ping, LUO Ying.  Developmental Effects of Intraperitoneal Injection of Polychlorinated Biphenyls in Rats During Pregnancy, Zoological Research.
    [13] ZENG Shao-ju, ZHANG Xin-wen, ZUO Ming-xue.  Change and Its Neural Mechanism of Volumes of Song Control Nuclei During Development in the Striated Mannikin (Lonchura striata swinhoei), Zoological Research.
    [14] MEI Zhen-tong.  Study on Learning and Memory of Mutant Mice, Zoological Research.
    [15] HUANG Jing-fei, Tom L.Blundell.  The Relations of Protein Sequence and Structural Conserv Ation With Function, Zoological Research.
    [16] LUO Hong, LIU Ci-quan, CAO Huai.  Secondary-Structural Features of The TATA Box In Eukaryotic, Zoological Research.
    [17] ZHANG Zi-gui, DU Hong-yan, ZHANG Wei-nin, WU Fu-mei.  Learning-Memory Dysfunction Caused by High Ca[2+] level and Changes of the Synaptic Interface-Structural Parameters, Zoological Research.
    [18] HUANG Jing-fei, LIU Ci-quan.  The Research on The Relationship Between protein Structural Fractals and Evolution, Zoological Research.
    [19] LING Fa-yao, SHI Li-ming.  The Study of B Chromosomes In Drosophila albomicans 2.The Reiation Between B Chromosomes and The Vitality of Kunming Population, Zoological Research.
    [20] LIU Ren-yi, HSU Ping-hsuan.  Effects on Learning and Memory of Electrolytic Lesions of Hippocampus in Rats, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1659
  • HTML全文浏览量:  39
  • PDF下载量:  2215
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-04
  • 修回日期:  2012-08-30
  • 刊出日期:  2012-10-10

目录

    /

    返回文章
    返回