留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of the structure, function and regulation of the chicken mir-17-92 cluster

YAN Xiao-Hong WANG Zhi-Peng WANG Ning

YAN Xiao-Hong, WANG Zhi-Peng, WANG Ning. Characterization of the structure, function and regulation of the chicken mir-17-92 cluster. Zoological Research, 2012, 33(5): 455-462. doi: 10.3724/SP.J.1141.2012.05455
Citation: YAN Xiao-Hong, WANG Zhi-Peng, WANG Ning. Characterization of the structure, function and regulation of the chicken mir-17-92 cluster. Zoological Research, 2012, 33(5): 455-462. doi: 10.3724/SP.J.1141.2012.05455

鸡mir-17-92基因簇的结构、功能及其调控

doi: 10.3724/SP.J.1141.2012.05455
基金项目: 国家重点基础研究发展计划(2009CB941604); 国家自然科学基金项目(30972086)
详细信息
  • 中图分类号: Q959.725; Q343

Characterization of the structure, function and regulation of the chicken mir-17-92 cluster

  • 摘要: mir-17-92基因簇(mir-17-92 cluster)是脊椎动物的一个保守miRNA基因簇, 在哺乳动物细胞增殖、分化、凋亡及发育等多种生物学过程中起重要的调控作用。同时, mir-17-92基因簇又是一个癌基因, 在多种肿瘤中表达。尽管对mir-17-92 基因簇的研究非常广泛, 但其作用机制还不完全清楚。鸡mir-17-92基因簇的结构组成特点、功能及其作用机制尚未见研究报道。该文根据同一miRNA基因簇的miRNAs在功能上相关的特点, 以鸡mir-17-92基因簇序列为研究对象, 采用生物信息学研究方法和手段, 开展了鸡mir-17-92基因簇的基因组结构、miRNAs序列组成、靶生物学过程和信号通路以及miRNAs结合位点分布特点等分析研究。结果发现, 鸡mir-17-92基因簇调控MAPK、Wnt和TGF-β等多个重要细胞信号通路; miRNA结合位点分布分析显示, 该miRNA基因簇多个成员共同作用于同一个靶基因, 提示该基因簇的miRNAs成员以组合和协同的方式调控靶基因。该研究为深入了解mir-17-92 基因簇如何调控癌症和发育中的关键细胞过程奠定了基础。
  • [1] Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. 2008. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc[J]. Proc Natl Acad Sci USA, 105(50): 19678-19683.
    [2] Avraham R, Yarden Y. 2012. Regulation of signalling by microRNAs[J]. Biochem Soc Trans, 40(1): 26-30.
    [3] Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. 2008. The impact of microRNAs on protein output[J]. Nature, 455(7209): 64-71.
    [4] Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D. 2009. miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution[J]. Dev Biol, 333(2): 238-250.
    [5] Ciechanover A, Orian A, Schwartz AL. 2000. Ubiquitin-mediated proteolysis: biological regulation via destruction[J]. Bioessays, 22(5): 442-451.
    [6] de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Geneviève D, Goldenberg A, Oufadem M, Manouvrier S, Munnich A, Vidigal JA, Vekemans M, Lyonnet S, Henrion-Caude A, Ventura A, Amiel J. 2011. Germline deletion of the miR-17-92 cluster causes skeletal and growth defects in humans[J]. Nat Genet, 43(10): 1026-1030.
    [7] Derycke LDM, Bracke ME. 2004. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signaling[J]. Int J Dev Biol, 48(5-6): 463-476.
    [8] Glazov EA, McWilliam S, Barris WC, Dalrymple BP. 2008. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals[J]. Mol Biol Evol, 25(5): 939-948.
    [9] Hagen JW, Lai EC. 2008. microRNA control of cell-cell signaling during development and disease[J]. Cell Cycle, 7(15): 2327-2332.
    [10] Inui M, Martello G, Piccolo S. 2010. MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol, 11(4): 252-263.
    [11] Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN. 2009. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer[J]. Nucleic Acids Res, 37(5): 1672-1681.
    [12] Li L, Shi JY, Zhu GQ, Shi B. 2011. MiR-17-92 cluster regulates cell proliferation and collagen synthesis by targeting TGFB pathway in mouse palatal mesenchymal cells[J]. J Cell Biochem, 113(4): 1235-1244.
    [13] Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. 2007. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells[J]. Dev Biol, 310(2): 442-453.
    [14] Mestdagh P, Boström AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, von Stedingk K, Ghesquière B, Schulte S, Dews M, Thomas-Tikhonenko A, Schulte JH, Zollo M, Schramm A, Gevaert K, Axelson H, Speleman F, Vandesompele J. 2010. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma[J]. Mol Cell, 40(5): 762-773.
    [15] Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, de Stanchina E, D'Andrea A, Sander C, Ventura A. 2009. Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas[J]. Genes Dev, 23(24): 2806-2811.
    [16] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. 2005. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature, 435(7043): 839-843.
    [17] Olive V, Jiang I, He L. 2010. mir-17-92, a cluster of miRNAs in the midst of the cancer network[J]. Int J Biochem Cell Biol, 42(8): 1348-1354.
    [18] Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. 2004. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma[J]. Cancer Res, 64(9): 3087-3095.
    [19] Peter ME. 2010. Targeting of mRNAs by multiple miRNAs: the next step[J]. Oncogene, 29(15): 2161-2164.
    [20] Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P. 2007. An E2F/miR-20a autoregulatory feedback loop[J]. J Biol Chem, 282(4): 2135-2143.
    [21] Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M. 2007. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development[J]. Cancer Sci, 98(9): 1482-1490.
    [22] Tanzer A, Stadler PF. 2004. Molecular evolution of a microRNA cluster[J]. J Mol Biol, 339(2): 327-335.
    [23] Trompeter H I, Abbad H, Iwaniuk K M, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P. 2011. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC[J]. PLoS One, 6(1): e16138.
    [24] Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. 2008. Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters[J]. Cell, 132(5): 875-886.
    [25] Wang Q, Li YC, Wang JH, Kong J, Qi YC, Quigg RJ, Li XM. 2008. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J]. Proc Natl Acad Sci USA, 105(8): 2889-2894.
    [26] Xiao CC, Srinivasan L, Calado DP, Patterson HC, Zhang BC, Wang J, Henderson JM, Kutok JL, Rajewsky K. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes[J]. Nat Immunol, 9(4): 405-414.
    [27] Yan XH, Wang N. 2010. Connections and differences between gene expression regulated by transcription factors and MicroRNAs[J]. Chn J Biochem Mol Biol, 26(10): 892-897. [闫晓红, 王宁. 2010. 转录因子与microRNA在基因表达调控中的功能联系及差异. 中国生物化学与分子生物学报, 26(10): 892-897.]
    [28] Yao J, Wang YX, Wang WS, Wang N, Li H. 2011. Solexa sequencing analysis of chicken pre-adipocyte microRNAs[J]. Biosci Biotechnol Biochem, 75(1): 54-61.
    [29] Yu ZR, Wang CG, Wang M, Li ZP, Casimiro MC, Liu MR, Wu KM, Whittle J, Ju XM, Hyslop T, McCue P, Pestell RG. 2008. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation[J]. J Cell Biol, 182(3): 509-517.
    [30] Yuan XY, Liu CN, Yang PC, He SM, Liao Q, Kang SL, Zhao Y. 2009. Clustered microRNAs' coordination in regulating protein-protein interaction network[J]. BMC Syst Biol, 3: 65.
    [31] Zhang R, Su B. 2009. Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution[J]. J Genet Genomics, 36(1): 1-6.Zhang ZW, An Y, Teng CB. 2009. The roles of miR-17-92 cluster in mammal development and tumorigenesis[J]. Hereditas, 31(11): 1094-1100. [张振武, 安洋, 滕春波. 2009. miR-17-92 基因簇microRNAs对哺乳动物器官发育及肿瘤发生的调控. 遗传, 31(11): 1094-1100.
  • [1] Jian-Peng Chen, Wei Pang, Zi-Wei Zhao, Yan-Hui Bi, Xiao-Wu Chen.  Transcription profiles of skin and head kidney from goldfish suffering hemorrhagic septicemia with an emphasis on the TLR signaling pathway, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.028
    [2] Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG.  Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.3.136
    [3] Zhi-Hui HUANG, Ai-Jun MA, Ji-Lin LEI.  Progress in study on the skin mucus lectin in fish, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.6.0674
    [4] Xiao-Yan HUANG, Ming-Li LI, Juan XU, Yue-Dong GAO, Wen-Guang WANG, An-Guo YIN, Xiao-Fei LI, Xiao-Mei SUN, Xue-Shan XIA, Jie-Jie DAI.  Analysis of the molecular characteristics and cloning of full-length coding sequence of Interleukin-2 in tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02121
    [5] FENG Jin-Mei, SUN Jun, WEN Jian-Fan.  Advances in the study of the nucleolus, Zoological Research. doi: 10.3724/SP.J.1141.2012.06549
    [6] TIAN Wei-Wei, GAO Yue-Dong, GUO Yan, HUANG Jing-Fei, XIAO Chang, LI Zuo-Sheng, ZHANG Hua-Tang.  Cloning of full-length coding sequence of tree shrew CD4 and prediction of its molecular characteristics, Zoological Research. doi: 10.3724/SP.J.1141.2012.01060
    [7] LI Yi-Jiang, GAO Yue-Dong, GUO Yan, LU Cai-Xia, HUANG Jing-Fei, XIA Xue-Shan, DA.  Cloning of full-length coding sequence of tree shrew CD3ε and prediction of its molecular characteristics, Zoological Research. doi: 10.3724/SP.J.1141.2010.05483
    [8] LIU Chang-qing, LIU Shuai, BAO A-dong, LU Tao-feng, WU Hong-mei, ZHANG Hong-hai.  Molecular Clone, Expression, Structure and Function Study of Beijing Fatty Chicken ADSL Gene, Zoological Research.
    [9] ZHAO Yang, YU Hong-shi, LU Heng, YAO Kai, CHENG Han-hua* , ZHOU Rong-jia*Interchromosomal Trans-Splicing of DMRT1 Gene on Chicken Chromosome Z, Zoological Research.
    [10] WANG Xiao-dong, XIAO Peng, LI Dong-feng.  Progress in Structure and Function of X Area in the Songbird's Forebrain, Zoological Research.
    [11] SHAO Xi-bing, SHI Zhen-dan, YU Ying-chun, LIU Ying, LIANG Shao-dong, CHEN Nan.  Immunoverification of Correctness of Cloned Chicken Leptin Gene, Zoological Research.
    [12] XIE Mei-na, ZHANG Cai-qiao, MI Yu-ling, ZENG Wei-dong.  Effects of Follicle-stimulating Hormone and Estrogen on Development of Embryonic Chicken Germ Cell in Vitro, Zoological Research.
    [13] DENG Li, ZHANG Wei-Min, LIN Hao-Ran.  Research Advances in Growth Hormone Receptor, Zoological Research.
    [14] ZHANG Long-Xian, NING Chang-Shen, JIANG Jin-Shu.  The Morphologic Feature of Cryptosporidium baileyi Endogenous Developmental Stages in Chickens and Influence on Parasitic Organs of Host, Zoological Research.
    [15] HUANG Jing-fei, Tom L.Blundell.  The Relations of Protein Sequence and Structural Conserv Ation With Function, Zoological Research.
    [16] HU Yu-hua, TIAN Jiu-chou.  Distribution of Somatostatin-Like Reactivities in Chicken Hypothalamus, Zoological Research.
    [17] LI Dong-feng, LI Jie.  The Hormonal Regulation of Vocal Behavior in Songbirds, Zoological Research.
    [18] LI Yuan-you, LIN Hao-ran SHEN Fang.  Endocrine Regulation of The Frog Hypothalamus-Pituitary-Gonad Axis, Zoological Research.
    [19] LIU Hong-lin, JI Qing, CHENG Yi-feng, JIANG Zhi-hua, HUANG Yue-ying.  Detecting Association of Exogenous DNA With Chicken Sperm Using Autoradiography, Zoological Research.
    [20] ZHANG Xin-wen, CHEN Yan, CHANG Yan-chun, YANG Xiu-hong, SU Gui-ping.  Fiber Connections and Functions of The Hyperstriatum Ventrale Pars Caudale in Fringilla montifringilla, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1595
  • HTML全文浏览量:  24
  • PDF下载量:  2093
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-11
  • 修回日期:  2012-08-17
  • 刊出日期:  2012-10-10

目录

    /

    返回文章
    返回