留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Glaucoma model for stem cell transplantation research in New Zealand white rabbits

GUO Li-Yun WEI Jing-Kuan YANG Shang-Chuan WANG Zheng-Bo

GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo. Glaucoma model for stem cell transplantation research in New Zealand white rabbits. Zoological Research, 2012, (2): 225-230. doi: 10.3724/SP.J.1141.2012.02225
Citation: GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo. Glaucoma model for stem cell transplantation research in New Zealand white rabbits. Zoological Research, 2012, (2): 225-230. doi: 10.3724/SP.J.1141.2012.02225

一种新的可用于干细胞移植的新西兰白兔青光眼视神经损伤模型

doi: 10.3724/SP.J.1141.2012.02225
基金项目: “973”项目(947703); 国家自然基金项目(31070963, 30670669)
详细信息
  • 中图分类号: Q95.33; Q436; Q57

Glaucoma model for stem cell transplantation research in New Zealand white rabbits

  • 摘要: 青光眼是一种致盲且不可逆神经退行性疾病,目前还没有能够彻底解决其视野缺失的治疗方法。神经干细胞研究的兴起为该病的治疗带来了可能,且迫切需要一种适用于干细胞移植研究的青光眼造模方法。该实验对新西兰白兔球结膜下注射地塞米松给药,2.5mg/次,一周3次,持续8周。眼底照相显示造模眼眼球屈光间质保持清晰,视乳头凹陷明显扩大、血管呈屈膝状;病理切片显示造模眼视神经明显损伤;海德堡视网膜断层扫描仪(Heidelberg retina tomography,HRT)定量分析显示造模眼盘沿面积减小(1.10±0.88)mm2、杯/盘比增大0.17±0.13,视网膜神经纤维层平均厚度降低(0.44±0.31)mm等青光眼性质病理改变,且均达到极显著水平(P<0.001)。建模成功后,于角膜缘后4mm向造模眼玻璃体注入猕猴神经干细胞,植入5个月后摘取眼球切片,通过荧光显微镜观察到存活的移植细胞。该实验建立了一种简单可靠、重复性强且适用于神经干细胞移植研究的慢性青光眼造模方法。
  • [1] Abrams LS, Vitale S, Jampel HD. 1996. Comparison of three tonometers for measuring intraocular pressure in rabbits[J]. Invest Ophthalmol Vis Sci, 37(5): 940-944.
    [2] Aihara M, Lindsey JD, Weinreb RN. 2003. Experimental mouse ocular hypertension: establishment of the model[J]. Invest Ophthalmol Vis Sci, 44(10): 4314-4320.
    [3] Babizhayev MA, Brodskaya MW. 1989. Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma[J]. Mech Ageing Dev, 47(2): 145-157.
    [4] Bar-Ilan A. 1984. Diurnal and seasonal variations in intraocular pressure in the rabbit[J]. Exp Eye Res, 39(2): 175-181.
    [5] Beitch BR, Eakins KE. 1969. The effects of prostaglandins on the intraocular pressure of the rabbit[J]. Br J Pharmacol, 37(1): 158-167.
    [6] Ben Simon GJ, Bakalash S, Aloni E, Rosner M. 2006. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy[J]. Am J Ophthalmol, 141(6): 1105-1111.
    [7] Bill A. 1977. Basic physiology of the drainage of aqueous humor[J]. Exp Eye Res, 25(Suppl): 291-304.
    [8] Bull ND, Limb GA, Martin KR. 2008. Human Muller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration[J]. Invest Ophthalmol Vis Sci, 49(8): 3449-3456.
    [9] Chihara E. 1982. Optic nerve damage in glaucoma[J]. Surv Ophthalmol, 27(2): 140-141.
    [10] Clark AF, Wilson K, McCartney MD, Miggans ST, Kunkle M, Howe W. 1994. Glucocorticoid-induced formation of cross-linked actin networks in cultured human trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 35(1): 281-294.
    [11] Dickerson JE Jr, Steely HT Jr, English-Wright SL, Clark AF. 1998. The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells[J]. Exp Eye Res, 66(6): 731-738.
    [12] Francois J. 1975. The importance of the mucopolysaccharides in intraocular pressure regulation[J]. Invest Ophthalmol, 14(3): 173-176.
    [13] Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. 2010. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 51(4): 2051-2059.
    [14] Jonas JB, Hayreh SS. 1999. Localised retinal nerve fibre layer defects in chronic experimental high pressure glaucoma in rhesus monkeys[J]. Br J Ophthalmol, 83(11): 1291-1295.
    [15] Katz RS, Henkind P, Weitzman ED. 1975. The circadian rhythm of the intraocular pressure in the New Zealand White rabbit[J]. Invest Ophthalmol, 14(10): 775-780.
    [16] Knepper PA, Breen M, Weinstein HG, Blacik JL. 1978. Intraocular pressure and glycosaminoglycan distribution in the rabbit eye: effect of age and dexamethasone[J]. Exp Eye Res, 27(5): 567-575.
    [17] Kumar DM, Agarwal N. 2007. Oxidative stress in glaucoma: a burden of evidence[J]. J Glaucoma, 16(3): 334-343.
    [18] Leske MC. 2007. Open-angle glaucoma—an epidemiologic overview[J]. Ophthalmic Epidemiol, 14(4): 166-172.
    [19] Levkovitch-Verbin H, Quigley HA, Martin KRG, Valenta D, Baumrind LA, Pease ME. 2002. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats[J]. Invest Ophthalmol Vis Sci, 43(2): 402-410.
    [20] Lim KS, Wickremasinghe SS, Cordeiro MF, Bunce C, Khaw PT. 2005. Accuracy of intraocular pressure measurements in new zealand white rabbits[J]. Invest Ophthalmol Vis Sci, 46(7): 2419-2423.
    [21] Martin KRG, Quigley HA, Valenta D, Kielczwski J, Pease ME. 2006. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma[J]. Exp Eye Res, 83(2): 255-262.
    [22] Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG. 2000. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model[J]. Invest Ophthalmol Vis Sci, 41(11): 3451-3459.
    [23] Morrison JC, Moore CG, Deppmeier LMH, Gold BG, Meshul CK, Johnson EC. 1997. A rat model of chronic pressure-induced optic nerve damage[J]. Exp Eye Res, 64(1): 85-96.
    [24] Naskar R, Wissing M, Thanos S. 2002. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma[J]. Invest Ophthalmol Vis Sci, 43(9): 2962-2968.
    [25] Neufeld AH, Sawada A, Becker B. 1999. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma[J]. Proc Natl Acad Sci USA, 96(17): 9944-9948.
    [26] Ogata H. 1971. Electrophysiological study of glaucoma 1. ERG in primary, especially simple glaucoma[J]. Nihon Ganka Kiyo, 22(6): 388.
    [27] Putney LK, Brandt JD, O’Donnell ME. 1997. Effects of dexamethasone on sodium-potassium-chloride cotransport in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 38(6): 1229-1240.
    [28] Rohen JW. 1983. Why is intraocular pressure elevated in chronic simple glaucoma[J]? Ophthalmology, 90(7): 758-765.
    [29] Steely HT, Browder SL, Julian MB, Miggans ST, Wilson KL, Clark AF. 1992. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 33(7): 2242-2250.
    [30] Vaajanen A, Vapaatalo H, Kautiainen H, Oksala O. 2008. Angiotensin (1-7) reduces intraocular pressure in the normotensive rabbit eye[J]. Invest Ophthalmol Vis Sci, 49(6): 2557-2562.
    [31] Vareilles P, Conquet P, Le Douarec JC. 1977. A method for the routine intraocular pressure (IOP) measurement in the rabbit: Range of IOP variations in this species[J]. Exp Eye Res, 24(4): 369-375.
    [32] Vareilles P, Silverstone D, Plazonnet B, Le Douarec JC, Sears ML, Stone CA. 1977. Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit[J]. Invest Ophthalmol Vis Sci, 16(11): 987-996.
    [33] Watts MT, Good PA, O’Neill EC. 1989. The flash stimulated VEP in the diagnosis of glaucoma[J]. Eye (Lond), 3(Pt 6): 732-737.
    [34] Weinreb RN, Polansky JR, Kramer SG, Baxter JD. 1985. Acute effects of dexamethasone on intraocular pressure in glaucoma[J]. Invest Ophthalmol Vis Sci, 26(2): 170-175.
    [35] Yun AJ, Murphy CG, Polansky JR, Newsome DA, Alvarado JA. 1989. Proteins secreted by human trabecular cells. Glucocorticoid and other effects[J]. Invest Ophthalmol Vis Sci, 30(9): 2012-2022.
  • [1] Ling Xu, Dan-Dan Yu, Yu-Hua Ma, Yu-Lin Yao, Rong-Hua Luo, Xiao-Li Feng, Hou-Rong Cai, Jian-Bao Han, Xue-Hui Wang, Ming-Hua Li, Chang-Wen Ke, Yong-Tang Zheng, Yong-Gang Yao.  COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.053
    [2] Gary Wong, Xiang-Guo Qiu.  Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.052
    [3] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [4] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu.  Development and characterization of a guinea pig model for Marburg virus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.054
    [5] Bin Gu, Katherine A. Dalton.  Models and detection of spontaneous recurrent seizures in laboratory rodents, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.042
    [6] Yong-Gang Yao.  Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.032
    [7] Ji Xiao, Rong Liu, Ce-Shi Chen.  Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.033
    [8] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [9] CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang.  The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication, Zoological Research. doi: 10.3724/SP.J.1141.2012.01099
    [10] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han.  Experimental studies on infant Tupaia belangeri chineses with EV71 infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.01007
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [12] LI Yuan, SU Jian-Jia, YANG Chun, CAO Ji, OU Chao, LIANG Liang, YANG Fang, WANG.  Progress on establishment of tree shrew(Tupaia) chronic infection with HBV in vivo, Zoological Research. doi: 10.3724/SP.J.1141.2011.01104
    [13] SHEN Pei-Qing, ZHENG Hong, LIU Ru-Wen, CHEN Li-Ling, LI Bo, HE Bao-Li, LI Jin-Tao, BE.  Progress and prospect in research on laboratory tree shrew in China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01109
    [14] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y.  Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis, Zoological Research. doi: 10.3724/SP.J.1141.2011.01040
    [15] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [16] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [17] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang.  Humanized SCID Mouse:A Small Animal Model for HIV Research, Zoological Research.
    [18] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen.  Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines, Zoological Research.
    [19] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
    [20] LIN Li-tang, XIA Shi-ling, ZHU Xin-ping.  Studies on Nuclear Transplantation of Somatic Cells in Teleost, Zoological Research.
  • 加载中
计量
  • 文章访问数:  2276
  • HTML全文浏览量:  27
  • PDF下载量:  1572
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-14
  • 修回日期:  2012-01-04
  • 刊出日期:  2012-04-22

目录

    /

    返回文章
    返回